PDF | PostScript | doi:10.1613/jair.606
This paper presents a new approach to identifying and eliminating mislabeled training instances for supervised learning. The goal of this approach is to improve classification accuracies produced by learning algorithms by improving the quality of the training data. Our approach uses a set of learning algorithms to create classifiers that serve as noise filters for the training data. We evaluate single algorithm, majority vote and consensus filters on five datasets that are prone to labeling errors. Our experiments illustrate that filtering significantly improves classification accuracy for noise levels up to 30 percent. An analytical and empirical evaluation of the precision of our approach shows that consensus filters are conservative at throwing away good data at the expense of retaining bad data and that majority filters are better at detecting bad data at the expense of throwing away good data. This suggests that for situations in which there is a paucity of data, consensus filters are preferable, whereas majority vote filters are preferable for situations with an abundance of data.
Click here to return to Volume 11 contents list