We introduce a novel approach to Compressed Path Databases, space efficient oracles used to very quickly identify the first edge on a shortest path. Our algorithm achieves query running times on the 100 nanosecond scale, being significantly faster than state-of-the-art first-move oracles from the literature. Space consumption is competitive, due to a compression approach that rearranges rows and columns in a first-move matrix and then performs run length encoding (RLE) on the contents of the matrix. One variant of our implemented system was, by a convincing margin, the fastest entry in the 2014 Grid-Based Path Planning Competition.
We give a first tractability analysis for the compression scheme used by our algorithm. We study the complexity of computing a database of minimum size for general directed and undirected graphs. We find that in both cases the problem is NP-complete. We also show that, for graphs which can be decomposed along articulation points, the problem can be decomposed into independent parts, with a corresponding reduction in its level of difficulty. In particular, this leads to simple and tractable algorithms with linear running time which yield optimal compression results for trees.