PDF | PostScript | doi:10.1613/jair.4031
In classical, AGM-style belief change, it is assumed that the underlying logic contains classical propositional logic. This is clearly a limiting assumption, particularly in Artificial Intelligence. Consequently there has been recent interest in studying belief change in approaches where the full expressivity of classical propositional logic is not obtained. In this paper we investigate belief contraction in Horn knowledge bases. We point out that the obvious extension to the Horn case, involving Horn remainder sets as a starting point, is problematic. Not only do Horn remainder sets have undesirable properties, but also some desirable Horn contraction functions are not captured by this approach. For Horn belief set contraction, we develop an account in terms of a model-theoretic characterisation involving weak remainder sets. Maxichoice and partial meet Horn contraction is specified, and we show that the problems arising with earlier work are resolved by these approaches. As well, constructions of the specific operators and sets of postulates are provided, and representation results are obtained. We also examine Horn package contraction, or contraction by a set of formulas. Again, we give a construction and postulate set, linking them via a representation result. Last, we investigate the closely-related notion of forgetting in Horn clauses. This work is arguably interesting since Horn clauses have found widespread use in AI; as well, the results given here may potentially be extended to other areas which make use of Horn-like reasoning, such as logic programming, rule-based systems, and description logics. Finally, since Horn reasoning is weaker than classical reasoning, this work sheds light on the foundations of belief change
Click here to return to Volume 48 contents list