PDF | PostScript | doi:10.1613/jair.3826
Description logic Knowledge and Action Bases (KAB) are a mechanism for providing both a semantically rich representation of the information on the domain of interest in terms of a description logic knowledge base and actions to change such information over time, possibly introducing new objects. We resort to a variant of DL-Lite where the unique name assumption is not enforced and where equality between objects may be asserted and inferred. Actions are specified as sets of conditional effects, where conditions are based on epistemic queries over the knowledge base (TBox and ABox), and effects are expressed in terms of new ABoxes. In this setting, we address verification of temporal properties expressed in a variant of first-order mu-calculus with quantification across states. Notably, we show decidability of verification, under a suitable restriction inspired by the notion of weak acyclicity in data exchange.