D. Poole and N. L. Zhang (2003) "Exploiting Contextual Independence In Probabilistic Inference", Volume 18, pages 263-313

PDF | PostScript | HTML | doi:10.1613/jair.1122

Bayesian belief networks have grown to prominence because they provide compact representations for many problems for which probabilistic inference is appropriate, and there are algorithms to exploit this compactness. The next step is to allow compact representations of the conditional probabilities of a variable given its parents. In this paper we present such a representation that exploits contextual independence in terms of parent contexts; which variables act as parents may depend on the value of other variables. The internal representation is in terms of contextual factors (confactors) that is simply a pair of a context and a table. The algorithm, contextual variable elimination, is based on the standard variable elimination algorithm that eliminates the non-query variables in turn, but when eliminating a variable, the tables that need to be multiplied can depend on the context. This algorithm reduces to standard variable elimination when there is no contextual independence structure to exploit. We show how this can be much more efficient than variable elimination when there is structure to exploit. We explain why this new method can exploit more structure than previous methods for structured belief network inference and an analogous algorithm that uses trees.

Click here to return to Volume 18 contents list