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Abstract

Enforcing local consistencies is one of the main features of constraint reasoning. Which
level of local consistency should be used when searching for solutions in a constraint network
is a basic question. Arc consistency and partial forms of arc consistency have been widely
studied, and have been known for sometime through the forward checking or the MAC
search algorithms. Until recently, stronger forms of local consistency remained limited to
those that change the structure of the constraint graph, and thus, could not be used in
practice, especially on large networks. This paper focuses on the local consistencies that
are stronger than arc consistency, without changing the structure of the network, i.e., only
removing inconsistent values from the domains. In the last five years, several such local
consistencies have been proposed by us or by others. We make an overview of all of them,
and highlight some relations between them. We compare them both theoretically and
experimentally, considering their pruning efficiency and the time required to enforce them.

1. Introduction

There are more and more applications in artificial intelligence that use constraint networks
(CNs) to solve combinatorial problems, ranging from design to diagnosis, resource allocation
to car sequencing, natural language understanding to machine vision. Finding a solution in
a constraint network involves looking for a set of value assignments, one for each variable,
so that all the constraints are simultaneously satisfied (Meseguer, 1989; Tsang, 1993). This
task is NP-hard and many exponential time algorithms have been proposed to solve this
problem. These algorithms, which make a systematic exploration of the search space, all
have backtracking as a basis. As long as the unassigned variables have values consistent
with the partial instantiation, they extend it by assigning values to variables. Otherwise,
a dead-end is reached and some previous assignments have to be changed before going on
with the partial instantiation extension. The explicit constraints of the network together
induce some implicit constraints. Since basic search algorithms do not record these implicit
constraints, they waste time by repeatedly detecting the local inconsistencies caused by
them. Filtering techniques are essential to reduce the size of the search space and so to
improve the efficiency of search algorithms. They can be used during a preprocessing step to
remove once and for all some local inconsistencies that otherwise would have been repeatedly
found during search (Dechter & Meiri, 1994). They can also be maintained during search.
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Search algorithms differ in the kind of local consistency they achieve after each choice
of a value for a variable. Most of them enforce partial arc consistency, going from forward
checking (FC,Golomb & Baumert, 1965; Haralick & Elliott, 1980), which only removes the
values directly arc inconsistent with the last assignment, to really full look-ahead (RFL,
Gaschnig, 1974), which achieves full arc consistency. Arc consistency (AC) and partial
forms of arc consistency are widely used for two reasons. First, they have low space and
time complexities, while path consistency and higher levels of k-consistency, which were
for a long time the only other options, are prohibitive and can change the structure of the
network. Moreover, until 1995, more pruningful local consistencies seemed uninteresting
since experimental evaluations of search algorithms showed that the limited local consistency
used by forward checking was the best choice (Nadel, 1988; Kumar, 1992; Bacchus & van
Run, 1995). This conclusion is not surprising since the comparisons were made on very
small and easy constraint networks. On such problems, the additional cost of pruning more
values could not be outweighed by the search savings.

However, the harder a constraint network is, the more useful filtering techniques are.
More recent works (Bessière & Régin, 1996; Sabin & Freuder, 1994; Grant & Smith, 1996)
testing search algorithms at the threshold (Cheeseman, Kanefsky, & Taylor, 1991), where
most of the hard problems are expected to be, show that using more pruningful local
consistencies can be worthwhile. Their conclusion is that maintaining arc consistency during
search (MAC), namely achieving AC both after the choice of a value for a variable and after
the refutation of such a choice, outperforms forward checking on hard problems. The good
behavior of MAC is even more significant on large problems, especially when domains are
large. It is conceivable that on very difficult instances, maintaining an even more pruningful
local consistency may pay off. Obviously, such an algorithm would waste seconds on easy
CNs but it would save many minutes (hours ?) on very hard problems, reducing the set of
pathological CNs on which search is really prohibitive.

In this paper we study the local consistencies as preprocessing filtering techniques. This
is a preliminary work before trying to determine which local consistency is the most advan-
tageous to be maintained during search. In the last five years, many new local consistencies
have been proposed. In the remaining of this paper, we focus our attention on those that
leave unchanged the structure of the network since they are the only able to be used on large
CNs. In addition to an overview of these local consistencies that only remove inconsistent
values, we both compare, theoretically and experimentally, their pruning efficiency and the
time needed to enforce them.

2. Definitions and Notations

A network of binary constraints P = (X , D, C) is defined by a set X = {i, j, . . . } of n
variables, each taking value in its respective finite domain Di, Dj , . . . elements of D, and a
set C of e binary constraints. d is the size of the largest domain. A binary constraint Cij

is a subset of the Cartesian product Di × Dj that denotes the compatible pairs of values
for i and j. We denote Cij(a, b) = true to specify that ((i, a), (j, b)) ∈ Cij . We then say
that (j, b) is a support for (i, a) on Cij . Checking whether a pair of values is allowed by
a constraint is called a constraint check . With each CN we associate a constraint graph
in which nodes represent variables and arcs connect pairs of variables that are constrained
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explicitly. c is the number of 3-cliques in the constraint graph and g is the maximum degree
of a node in the constraint graph. The neighborhood of i is the set of variables adjacent to i
in the constraint graph. A domain D′ = {D′

i, D
′
j , . . .} is a sub-domain of D = {Di, Dj , . . .}

if ∀i,D′
i ⊆ Di. An instantiation I of a set of variables S is a set of value assignments

{Ij}j∈S , one for each variable belonging to S, s.t. ∀j ∈ S, Ij ∈ Dj . An instantiation I of
S satisfies a constraint Cij if {i, j} 6⊆ S or Cij(Ii, Ij) is true. An instantiation is consistent
if it satisfies all the constraints. A pair of values ((i, a), (j, b)) is path consistent if for all
k ∈ X s.t. j 6= k 6= i 6= j, this pair of values can be extended to a consistent instantiation
of {i, j, k}. (j, b) is a path consistent support for (i, a) if (a, b) ∈ Cij and ((i, a), (j, b)) is
path consistent. A solution of P = (X , D, C) is a consistent instantiation of X . A value
(i, a) is consistent if there is a solution I such that Ii = a, and a CN is consistent if it has
at least one solution. We denote by P |Di={a} the CN obtained by restricting Di to {a} in
P . If LC is a local consistency, a CN P is not LC-consistent iff LC does not hold on P .
A CN P is LC-inconsistent iff we cannot obtain a LC-consistent constraint network by
deletion of some local inconsistencies in P . If a local consistency LC is used to detect the
inconsistency of instantiations no longer than 1, we can say that a CN P = (X , D, C) is
LC-inconsistent iff there is no sub-domain D′ of D such that LC holds on (X , D′, C).

3. The Local Consistencies Studied

Filtering techniques can be used to detect the inconsistency of a CN, and under some
assumptions, they can ensure a backtrack-free search (Freuder, 1982, 1985). However,
their usual purpose is not to find a solution in a constraint network. They remove some
local inconsistencies and so delete some regions of the search space that do not contain
any solution. The resulting CN is equivalent to the initial one since the set of solutions
is unchanged, but if substantial reductions are made the search becomes easier. In this
section we review the basis of arc consistency, k-consistency, restricted path consistency,
and inverse consistencies. Furthermore, we extend the idea of restricted path consistency
to k-restricted path consistency and Max-restricted path consistency. We propose a new
class of local consistencies called singleton consistencies. We also show a property of path
inverse consistency that can be used to have an optimal worst case time complexity in a
path inverse consistency algorithm (Debruyne, 2000).

Arc consistency The most widely used local consistency is arc consistency. It is based
on the notion of support. A value is viable as long as it has at least one compatible value in
the domain of each neighboring variable. An AC algorithm has to remove the values that
have no support on a constraint. As in most of the filtering techniques, the value deletions
have to be propagated through the network since they can lead to the arc inconsistency of
some values that were previously viable.

k-consistency A consistent instantiation of length k-1 is k-consistent (i.e., (k-1, 1)-
consistent in the formalism of Freuder, 1985) if it can be extended to any additional kth

variable. The time and space complexities of enforcing k-consistency are polynomial with
the exponent dependent on k. If k ≥ 3, the constraints have to be represented in extension
to store the (k-1)-tuples deleted, and the structure of the network can be changed. This
leads to huge space requirements and subsequently important cpu time costs. In practice,
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only 2-consistency, which is arc consistency in binary CNs, can be used. Although path
consistency (PC, namely 3-consistency) cannot be used on large CNs, our experiments will
involve strong path consistency (namely enforcing both arc and path consistency) because
PC has been widely studied.

Restricted path consistency The aim of Berlandier when he proposed restricted path
consistency (RPC, Berlandier, 1995) was to remove more inconsistent values than AC
while avoiding the drawbacks of path consistency. Even the most efficient PC algorithms
have to try to extend all the pairs of values (even those between two variables that are
not neighbors) to any third variable. The basis of RPC is to avoid most of this prohibitive
work. RPC performs only the most pruningful path consistency checks, namely those able
to directly delete a value. In addition to AC, an RPC algorithm checks the path consistency
of the pairs of values ((i, a), (j, b)) such that (j, b) is the only support for (i, a) in Dj . If such
a pair is path inconsistent, its deletion would lead to the arc inconsistency of (i, a). Thus
(i, a) can be removed. These few additional path consistency checks allow detecting more
inconsistent values than AC without having to delete any pair of values, and so leaving
unchanged the structure of the network.

k-restricted path consistency We can extend the idea of RPC to a more pruningful
local consistency. If RPC holds, the values that have only one support on a constraint are
such that this support is path consistent. Checking the path consistency of more supports
can remove even more values without falling into the traps of PC. k-restricted path con-
sistency (k-RPC, Debruyne & Bessière, 1997a) looks for a path consistent support on a
constraint for the values that have at most k supports on this constraint. RPC is 1-RPC
and AC corresponds to 0-RPC. If k-RPC holds, to achieve (k+1)-RPC we only have to
check the values that have exactly (k+1) supports on a constraint and to propagate their
possible deletion. So, it is possible to achieve AC, RPC, 2-RPC and so on, each time reusing
previous filtering effort. This adaptive enforcement can be stopped as soon as each value
has at least one path consistent support on each constraint, the constraint network being
d-RPC where d is the size of the largest domain. Indeed, if after achieving k-RPC all the
values have at most k supports on each constraint, k′-RPC holds for all k′ > k.

Max-restricted path consistency A constraint network is Max-restricted path consis-
tent (Max-RPC, Debruyne & Bessière, 1997a) if all the values have at least one path
consistent support on each constraint, whatever is the number of supports. From the prun-
ing efficiency point of view, Max-RPC is an upper bound for k-RPC. Achieving Max-RPC
involves deleting all the k-restricted path inconsistent values for all k. However, achieving
Max-RPC can be less expensive than enforcing a high level of k-RPC. As opposed to Max-
RPC, to achieve k-RPC we have to look for the values that have at most k supports on a
constraint to know the values for which a path consistent support has to be found. This
can be expensive if k is great, the algorithm having to look for k+1 supports for each value
on each constraint. Unconditionally looking for a path consistent support avoids this costly
extra work.

k inverse consistency The aim of Freuder and Elfe when they proposed inverse consis-
tency (Freuder & Elfe, 1996) was to achieve high order local consistencies with a good space
complexity. A k-consistency algorithm removes the instantiation of length k-1 that cannot
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be extended to any kth variable. It requires O(nk−1dk−1) space to keep track of the deleted
instantiations. Space requirements are no longer a problem with k inverse consistency ((1,
k-1)-consistency), which removes the values that cannot be extended to a consistent instan-
tiation including any k-1 additional variables. Its linear space complexity would allow using
it on large CNs. However, its worst case time complexity is polynomial with the exponent
dependent on k, which restricts its use to small values of k.

Path inverse consistency The first level of k inverse consistency removing more values
than AC is path inverse consistency (PIC, k = 3). By definition, (i, a) is path inverse
consistent if it can be extended to all the 3-tuples of variables containing i. However, as
said in (Freuder & Elfe, 1996), not all the 3-tuples need to be checked to enforce PIC. Only
one of the tuples (i, j, k) and (i, k, j) has to be checked. Moreover, if i is linked to neither j
nor k, (i, a) can be deleted because of (i, j, k) only if all the values of j or k are path inverse
inconsistent. In such a case, checking (i, j, k) is useless since PIC detects the inconsistency
of the network when processing j or k.

Neighborhood inverse consistency Since k inverse consistency is polynomial with the
exponent dependent on k, checking the k inverse consistency of all the values is prohibitive if
k is great. However, if the variables are not uniformly constrained, it would be worthwhile to
adapt the level of k inverse consistency to the number of constraints involving them, focusing
filtering effort on the most constrained variables (as it is done for adaptive consistency
Dechter & Pearl, 1988). This is the basis of neighborhood inverse consistency (NIC, Freuder
& Elfe, 1996), which removes the values that cannot be extended to a consistent instantiation
including all the neighboring variables. We have to point out that the behavior of NIC
is dependent on the structure of the constraint graph. If two variables i and j are not
neighbors, we can add a universal constraint allowing all the pairs of values (a, b) ∈ Di×Dj

between i and j. The resulting CN is equivalent to the initial one since it has the same set of
solutions. However, as opposed to the other filterings studied in this paper, NIC is affected
by this change since it can remove more values. Obviously, this process increases time
complexity. On complete constraint networks, NIC tries to extend all the values to a whole
solution, namely deleting all the globally inconsistent values (named variable completability
in Freuder, 1991). This is a far more difficult task than looking for one solution. To be cost
effective, NIC has to be used only on sparse CNs, where the degree of the variables is small.

Singleton consistencies If a value (i, a) is consistent, the constraint network obtained
by restricting Di to the singleton {a} is consistent. Singleton consistencies are a class of
filtering techniques based on this remark. To detect the inconsistency of a value (i, a), a
singleton consistency filtering technique checks whether a given local consistency can detect
the possible inconsistency of P |Di={a}. For example, singleton arc consistency (SAC, De-
bruyne & Bessière, 1997b) deletes the values (i, a) such that P |Di={a} has no arc consistent
sub-domain.1 SAC has been inspired by the strong path consistency algorithm proposed
by McGregor(McGregor, 1979). A SAC algorithm is obtained by omitting the deletions

1. Any AC algorithm can be used to know whether enforcing AC on P |Di={a} leads to a domain wipe out,
but a lazy approach (such as LAC7 Schiex, Régin, Gaspin, & Verfaillie, 1996) is sufficient.
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• A binary CN is (i, j)-consistent iff ∀i ∈ X , Di 6= ∅ and any consistent instan-
tiation of i variables can be extended to a consistent instantiation including
any j additional variables.

• A value a ∈ Di is arc consistent iff, ∀j ∈ X s.t. Cij ∈ C, there exists
b ∈ Dj s.t. Cij(a, b). A domain Di is arc consistent iff, ∀a ∈ Di, (i, a) is arc
consistent. A CN is arc consistent ((1, 1)-consistent) iff ∀Di ∈ D, Di is a
non empty arc consistent domain.

• A pair of values ((i, a), (j, b)) is path consistent iff ∀k ∈ X , there exists c ∈ Dk

s.t. Cik(a, c) and Cjk(b, c), otherwise it is path inconsistent. A CN is path
consistent ((2, 1)-consistent) iff no path inconsistent pair of values is allowed.

• A binary CN is strongly path consistent iff it is node consistent, arc consistent
and path consistent.

• A binary CN is path inverse consistent iff it is (1, 2)-consistent i.e.,
∀(i, a)∈D ∀j, k∈X s.t. j 6= i 6= k 6= j, ∃(j, b)∈D and ∃(k, c)∈D s.t.
Cij(a, b) ∧ Cik(a, c) ∧ Cjk(b, c)

• A binary CN is neighborhood inverse consistent iff ∀(i, a)∈D, (i, a) can be
extended to a consistent instantiation including the neighborhood of i.

• A binary CN is restricted path consistent iff
∀i ∈ X , Di is a non empty arc consistent domain and,
∀(i, a) ∈ D, for all j ∈ X s.t. (i, a) has an unique support b in Dj ,
for all k ∈ X linked to both i and j, ∃c ∈ Dk s.t. Cik(a, c) ∧Cjk(b, c).

• A binary CN is k-restricted path consistent iff
∀i ∈ X , Di is a non empty arc consistent domain and,
∀(i, a) ∈ D, for all Cij ∈ C s.t. (i, a) has at most k supports in Dj ,
∃b ∈ Dj s.t. Cij(a, b) and
∀k ∈ X linked to both i and j, ∃c ∈ Dk s.t. Cik(a, c) ∧Cjk(b, c).

• A binary CN is max-restricted path consistent iff
∀i ∈ X , Di is a non empty arc consistent domain and,
∀(i, a) ∈ D, for all Cij ∈ C,
∃b ∈ Dj s.t. Cij(a, b) and
∀k ∈ X linked to both i and j, ∃c ∈ Dk s.t. Cik(a, c) ∧Cjk(b, c).

• A binary CN P is singleton arc consistent iff ∀i ∈ X , Di 6= ∅ and ∀(i, a) ∈ D,
P |Di={a} has an arc consistent sub-domain.

• A binary CN P is singleton restricted path consistent iff ∀i ∈ X , Di 6= ∅ and
∀(i, a) ∈ D, P |Di={a} has a restricted path consistent sub-domain.

Figure 1: The mentioned local consistencies.
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Name of Worst case Worst case
the algorithm time complexity space complexity

AC7 (Bessière, Freuder, & Régin, 1999) O(ed2)(∗) O(ed)
RPC2 (Debruyne & Bessière, 1997a) O(en + ed2 + cd2)(∗) O(ed + cd)

Max RPC1 (Debruyne & Bessière, 1997a) O(en + ed2 + cd3)(∗) O(ed + cd)
PC5 (Singh, 1995) O(n3d3)(∗) O(n3d2)

PC8 (Chmeiss & Jégou, 1996) O(n3d4) O(n2d)2

PIC1 (Freuder & Elfe, 1996) O(en2d4) O(n)
PIC2 (Debruyne, 2000) O(en + ed2 + cd3)(∗) O(ed + cd)

NIC1 (Freuder & Elfe, 1996) O(g2(n + ed)dg+1) O(n)
SAC1 (Debruyne & Bessière, 1997b) O(en2d4) O(ed)

SRPC1 (Debruyne & Bessière, 1997b) O(en + n2(e + c)d4) O(ed + cd)
(∗) optimal worst case time complexity.

Table 1: The most efficient algorithms achieving the mentioned local consistencies.3

of pairs of values in that algorithm. Many other singleton consistencies can be considered
since any local consistency can be used to detect the possible inconsistency of the CNs
P |Di={a} with (i, a) ∈ D. If a local consistency can be enforced in a polynomial time, the
corresponding singleton consistency also has a polynomial worst case time complexity.

The formal definitions of the local consistencies studied in this paper are presented in
Figure 1. Table 1 recalls the time and space complexities of the most efficient algorithms
enforcing them. The worst case time complexity of SAC1, SRPC1, and NIC1 have not been
proved to be optimal.

4. Relations between PIC, RPC and Max-RPC

To highlight the relations between PIC, RPC and Max-RPC, let us show a property of path
inverse consistency. As shown in (Debruyne, 2000), if we assume that the constraint network
is arc consistent, enforcing PIC requires checking even less 3-tuples than those mentioned in
(Freuder & Elfe, 1996). If (i, a) is arc consistent, it can be extended to any 3-tuple (i, j, k)
such that there is no constraint between j and k. Indeed, (i, a) has a support (j, b) on Cij

and a support (k, c) on Cik, and since j is not linked to k, ((i, a), (j, b), (k, c)) is consistent.
Furthermore, (i, a) can be extended to (i, j, k) if there is no constraint between i and k
(resp. between i and j). Indeed, (i, a) has a support b in Dj (resp. c in Dk) and this value
being arc consistent too, it has a support c in Dk (resp. b in Dj). So, ((i, a), (j, b), (k, c))
is consistent. Consequently, if the constraint network is arc consistent, the only 3-tuples
that have to be checked to achieve PIC correspond to the 3-cliques of the constraint graph.

2. However a O(n2d2) data structure is required for the constraint representation.
3. See Section 2 for a definition of n, d, e, c, and g.
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Figure 2: Examples showing the relations between PIC, RPC and Max-RPC.

Furthermore, the definition of PIC shows that any constraint network involving less than
three variables is path inverse consistent, even though it is not arc consistent.

Property 1 A CN is path inverse consistent iff
• it involves less than three variables, or
• it is arc consistent and for each value (i, a) in D, for any 3-clique {i, j, k},

(i, a) can be extended to a consistent instantiation of {i, j, k}.

This property allows us to see the relations between PIC, RPC and Max-RPC. If a
value (i, a) has no support on a constraint Cij , the three local consistencies delete this
arc inconsistent value (see Figure 2A). If (i, a) has only one support b in Dj , PIC, RPC,
and Max-RPC delete (i, a) because of Cij if ((i, a), (j, b)) is path inconsistent (see Figure
2B). The difference between these three local consistencies appears if (i, a) has at least two
supports on Cij . In such a case, (i, a) is restricted path consistent w.r.t. Cij but PIC can
delete it if there is a 3-clique {i, j, k} such that all the supports of (i, a) in Dj are path
inconsistent because of k (see Figure 2C). So, PIC is more pruningful than RPC. But it
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often deletes only few additional values because the supports of a value are seldom all path
inconsistent because of the same third variable. Max-RPC is far more pruningful since it
deletes (i, a) because of Cij if all its supports in Dj are path inconsistent, even if they are
not path inconsistent because of the same third variable (see Figure 2D).

5. Pruning Efficiency

5.1 Qualitative Study

To compare the pruning efficiency of the local consistencies presented above, we use the
transitive relation “stronger” introduced in (Debruyne & Bessière, 1997b). A local consis-
tency LC is stronger than another local consistency LC ′ if in any CN in which LC holds,
LC ′ holds too. Consequently, if LC is stronger than LC ′, any algorithm achieving LC
deletes at least all the values removed by an algorithm achieving LC ′. For instance, since
by definition of restricted path consistency RPC is stronger than AC, an RPC algorithm
removes at least all the arc inconsistent values. A local consistency LC is strictly stronger
than another local consistency LC ′ if LC is stronger than LC ′ and there is at least one CN
in which LC ′ holds and LC does not.

Theorem 1 Restricted path consistency is strictly stronger than AC.

Proof By definition of restricted path consistency, RPC is stronger than arc consistency.
Figure 3a shows that there exists a constraint network on which AC holds and RPC does
not. Therefore, RPC is strictly stronger than AC. 2

Theorem 2 If k > k′ ≥0, k-RPC is strictly stronger than k′-RPC.

Proof The proof that k-RPC is stronger than k′-RPC if k > k′ ≥0 is trivial. Figure 3g
shows that there exists a constraint network on which k′-RPC holds and k-RPC (k > k′ ≥0)
does not. Therefore, k-RPC is strictly stronger than k′-RPC if k > k′ ≥0. 2

Theorem 3 Max-RPC is strictly stronger than k-RPC, ∀k ≥0.

Proof The proof that Max-RPC is stronger than k-RPC ∀k ≥0 is trivial. Figure 3g shows
that for any k ≥0 there exists a constraint network on which k-RPC holds and Max-RPC
does not. Therefore, Max-RPC is strictly stronger than k-RPC ∀k ≥0. 2

Theorem 4 If |X | ≥3, path inverse consistency is strictly stronger than restricted path
consistency.

Proof From property 1, PIC is stronger than AC if |X | ≥3. Now, consider a value (i, a)
having only one support (j, b) on Cij . If PIC holds, for any third variable k, (i, a) can be
extended to a consistent instantiation I including {i, j, k} and since b is the only support of
(i, a) in Dj , Ij = b. So ((i, a), (j, b)) is path consistent and (i, a) is restricted path consistent
w.r.t. Cij . Furthermore, Figure 3b shows that there exists a constraint network on which
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RPC holds and PIC does not. Therefore, path inverse consistency is strictly stronger than
restricted path consistency if |X | ≥3. 2

Theorem 5 If |X | ≥3, max-restricted path consistency is strictly stronger than path inverse
consistency.

Proof Suppose there is a max-restricted path consistent CN P with a value (i, a) which
is not path inverse consistent. Since the CN is max-restricted path consistent, it is also
arc consistent by definition of max-restricted path consistency. Thus, because of property
1 we know there exist two variables j and k such that {i, j, k} is a clique in the constraint
graph and (i, a) cannot be extended to a consistent instantiation on {i, j, k}. As a result,
none of the supports of (i, a) on Cij is path consistent, which contradicts the assumption
that the CN P is max-restricted path consistent. Furthermore, Figure 3i shows that there
exists a constraint network on which path inverse consistency hold and max-restricted path
consistency does not. Therefore, if |X | ≥3, max-RPC is strictly stronger 2

Theorem 6 Singleton arc consistency is strictly stronger than Max-RPC.

Proof Suppose that there exists a CN P with a singleton arc consistent value (i, a) that
is not max-restricted path consistent. Let j ∈ X be a variable such that (i, a) has no
path consistent support in Dj . For each support b of (i, a) in Dj , there exists a variable k
such that 6 ∃c ∈ Dk such that Cik(a, c) ∧ Cjk(b, c). Therefore, all the values of Dj are arc
inconsistent w.r.t. P |Di={a} and (i, a) is not singleton arc consistent. So, SAC is stronger
than Max-RPC. Figure 3e shows that there exists a constraint network on which Max-RPC
holds and SAC does not. Therefore, SAC is strictly stronger than Max-RPC. 2

Theorem 7 Neighborhood inverse consistency is strictly stronger than max-restricted path
consistency.

Proof Let (i, a) be any value of a neighborhood inverse consistent CN P . There exists a
consistent instantiation I including i and its neighborhood s.t. Ii = a. For any Cij ∈ C, Ij

is a path consistent support of (i, a). Indeed, let k be any third variable. If k is linked to i,
((i, a), (j, Ij), (k, Ik)) is a consistent instantiation since P is neighborhood inverse consistent.
Otherwise, there are two cases: First, if k is not linked to j, ((i, a), (j, Ij), (k, c)) is consistent
∀c ∈ Dk; Second, if ∃Cjk ∈ C, there exists a consistent instantiation I ′ of j and its neigh-
borhood s.t. I ′j = Ij and ((i, a), (j, I ′j), (k, I ′k)) is consistent. So, (i, a) is max-restricted path
consistent. Furthermore, Figure 3d shows that there exists a constraint network on which
Max-RPC holds and NIC does not. Therefore, NIC is strictly stronger than Max-RPC. 2

Theorem 8 Strong path consistency is strictly stronger than singleton arc consistency.

Proof Consider a problem that is strong path consistent. Any pair of values can be ex-
tended to any third variable. Furthermore, since the problem is strong path consistent, it
is also arc consistent and a sub-problem obtained by restricting a domain Di to a singleton
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{(i, a)} can be made arc consistent. The initial problem is therefore singleton arc consistent.
Figure 3c shows that there exists a constraint network on which SAC holds and strong PC
does not. Therefore, strong PC is strictly stronger than SAC. 2

Theorem 9 Singleton restricted path consistency is strictly stronger than singleton arc
consistency.

Proof Singleton restricted path consistency is stronger than singleton arc consistency since
RPC is stronger than AC. Figure 3d shows that there exists a constraint network on which
SAC holds and SRPC does not. Therefore, SRPC is strictly stronger than SAC. 2

The stronger relation does not induce a total ordering. Some local consistencies are
incomparable.

Theorem 10

1. If |X | ≥3, path inverse consistency and k-restricted path consistency are incomparable.

2. Neighborhood inverse consistency and singleton arc consistency are incomparable.

3. Neighborhood inverse consistency and strong path consistency are incomparable.

4. Neighborhood inverse consistency and singleton restricted path consistency are incom-
parable.

Proof

1. cf. Figure 3h and Figure 3j.

2. cf. Figure 3d and Figure 3e.

3. cf. Figure 3d and Figure 3e.

4. cf. Figure 3e and Figure 3f.

Figure 4 summarizes the relations between the local consistencies. There is an arrow
from LC to LC ′ iff LC is strictly stronger than LC ′. A crossed line between two local
consistencies means that they are not comparable w.r.t. the “stronger” relation. When
LC is not stronger than LC ′ (LC ′ is strictly stronger than LC, or LC and LC ′ are not
comparable), a CN in which LC holds and LC ′ does not can be found in Figure 3. Obviously,
the stronger relation is transitive. In Figure 4 we omit the transitivity arcs.

215



Debruyne & Bessière

AC RPC RPC PIC

SAC NIC

SAC SRPC
Strong PC NIC

Strong PC SRPC NIC Strong PC
SRPC

SRPC NIC

SRPC Strong PC

SAC Strong PC

 pair of values.
in A B A is not stronger than B (B deletes the value     on this A consistent network)

forbidden

... The domain of a variable.
 A

Max-RPC
NIC
NIC

SAC
SAC

RPC 2-RPC

2-RPC PIC

k-RPC Max-RPC

PIC 2-RPC
PIC Max-RPC

(c)(a) (b)

(e)(d )

(f) (g)

(h ) (j)(i)

k-RPC k'-RPC   if k'>k>0

Max-RPC NIC
k+ 1

k+ 1

k+1

k+ 1

k+ 1

Figure 3: Some CNs proving the “not stronger” relations between some of the mentioned
local consistencies.
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A B : A and B are incomparable w.r.t. the stronger relation.
A B : A is strictly stronger than B.

SRPC

SAC

Max-RPC

k-RPC
(k>1)

RPC

AC

PIC

NICStrong PC

Figure 4: Relations between the mentioned local consistencies.

5.2 Experimental Evaluation

Figure 4 does not give any quantitative information. A local consistency LC can remove
more values than another local consistency LC ′ on most of the CNs even though it is
incomparable with LC because of some particular CNs. When they are comparable, it does
not show if a local consistency is far more pruningful than another or if it performs only
few additional value deletions. To have some quantitative information about the pruning
efficiency of these local consistencies, we performed an experimental evaluation. The aim of
this evaluation is to show how pruningful a local consistency is on random CNs, with a fixed
number of variables and values, when the number of constraints and the constraint tightness
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Figure 5: The T0 bounds for random CNs having 40 variables and 15 values in each domain.

are changing. We used the random uniform CN generator of (Frost, Bessière, Dechter, &
Régin, 1996) which produces instances according to the Model B (Prosser, 1996). It involves
four parameters: n the number of variables, d the common size of the initial domains, p1
the proportion of constraints in the network (the density p1=1 corresponds to the complete
graph) and p2 the proportion of forbidden pairs of values in a constraint (the tightness).
The generated problems have 40 variables and 15 values in each domain. For each local
consistency and each density p1, two particular values of the tightness have been determined.
On the one hand, T0(p1) is the tightness such that the local consistency does not delete any
value on 50% of the CNs generated with p1 for density. For values of tightness lower than
T0(p1), the local consistency seldom deletes many values. On the other hand, Tall(p1) is the
tightness such that the local consistency finds the inconsistency of 50% of the CNs generated
with density p1. On constraint networks with tighter constraints, the local consistency
often removes all the values. For all the mentioned local consistencies, the values T0(p1)
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Figure 6: The Tall bounds for random CNs having 40 variables and 15 values in each domain.

and Tall(p1) for any density p1 are given in Figure 5 and Figure 6 respectively. We also
show these bounds for the variable completability filtering which removes all the globally
inconsistent values, and thus is the strongest filtering we can have when we limit filtering to
the domains. To determine the T0 and Tall bounds, 300 CNs have been generated for each
(density, tightness) pair. This explains why the generated problems are relatively small.

As already proved theoretically, PIC is stronger than RPC. Their pruning efficiencies
are closed. RPC deletes most of the path inverse inconsistent values and is halfway between
AC and Max-RPC in terms of pruning efficiency. k-RPC with k > 1 is incomparable
with PIC with regard to the stronger relation. However, Figure 5 and Figure 6 show that
2-RPC is more pruningful than PIC. SAC and strong PC have almost the same pruning
efficiency. Their T0 limits merge and their Tall limits show a slight difference. This confirms
the similitude between SAC and strong PC pointed out in Section 3. Although SRPC and
strong PC are not comparable w.r.t. the stronger relation, SRPC removes is more pruningful
than strong PC. As predicted in (van Beek, 1994), these polynomial filterings have more
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Figure 7: The T0 (black points) and Tall (white points) bounds for random CNs having 40
variables, 15 values in each domain, and density 1.

difficulties to delete inconsistent values on dense problems with loose constraints. On sparse
CNs, the polynomial local consistencies studied are close to variable completability, whereas
on very dense CNs, Figure 5 and Figure 6 show a large range of tightnesses between them and
variable completability. NIC behaves very differently since on complete constraint networks
it corresponds to variable completability. So, on dense CNs, NIC is far more pruningful
than the other local consistencies. On CNs generated with a density lower than .28 NIC
is less pruningful than SRPC, strong PC and SAC. The more important the propagation
through the network is, the closer T0 and Tall are. If a filtering (such as AC) uses a very
local property to delete inconsistent values, there is a large set of CNs on which it removes
some but not all the values. More pruningful local consistencies consider a more important
part of the network to know whether a value is consistent or not. So, they seldom delete
few values. On most of the CNs, they do not delete any value, or detect inconsistency: the
propagation of the first value deletions often leads to a domain wipe out.

6. Time Efficiency

6.1 Radio Link Frequency Assignment Problems

An experimental evaluation has been done on the radio link frequency assignment problems
described in (Cabon, de Givry, Lobjois, Schiex, & Warners, 1999), namely the instances
of the CELAR4 named Scen01 to Scen11, and the GRAPH instances generated using the
GRAPH generator at Delft University named Graph01 to Graph14. In these problems we
have to assign frequencies to a set of radio links defined between pairs of sites in order to
avoid interferences5. These problems have from 200 to 916 variables and there are 40 values
in average in each domain. The constraints are binary and have a cost of violation specified

4. We thanks the Centre d’Electronique de l’Armement (France).
5. See http://www-bia.inra.fr/T/schiex/Doc/CELARE.html for a more detailed presentation of these

problems.
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AC7 RPC2 PIC2 Max-RPC1 SAC1 SRPC1 NIC1
Scen02 0.27 0.7 4.38 6.33 45.5 434.93 10.45
Scen03 0.58 1.55 9.13 14.21 99.49 946.31 26.58
Scen11 0.89 2.53 13.79 25.84 144.3 1362.18 time out

Table 2: Cpu time performances on some RLFAP instances on which all the local consis-
tencies studied hold.

by a level from 0 to 4. The level 0 corresponds to hard constraints, and levels from 1 to 4
have a decreasing cost of violation. For each problem ScenXX (resp. GraphXX), we call
ScenXX.3, ScenXX.2, ScenXX.1 and ScenXX.0 (resp. GraphXX.3, GraphXX.2, GraphXX.1
and GraphXX.0) the problems of satisfaction obtained by considering the problem ScenXX
(resp. GraphXX) with only the constraints of level 0 to 3, 0 to 2, 0 to 1, and 0 respectively.

In this experimental evaluation, we consider both the cpu time performances and the
percentage of values deleted by the local consistencies studied. The algorithms used are AC7
(Bessière, Freuder, & Régin, 1995), RPC2 (Debruyne & Bessière, 1997a), PIC2 (Debruyne,
2000), Max-RPC1 (Debruyne & Bessière, 1997a), the singleton arc consistency algorithm
of (Debruyne & Bessière, 1997b) (SAC1) based on AC6, a SRPC algorithm based on RPC2
(SRPC1), and the NIC algorithm proposed in (Freuder & Elfe, 1996) (NIC1) using FC-
CBJ (Prosser, 1993) (as inFreuder & Elfe, 1996) with dom+deg dynamic variable ordering
heuristic (minimal domain first, in which ties are broken by choosing the variable with the
highest degree in the constraint graph Frost & Dechter, 1995; Bessière & Régin, 1996). All
these algorithms have been modified to stop as soon as a domain wipe out occurs. We do
not show results on strong PC in this section because on these large problems it requires
often more than our 2 hours time out limit. These algorithms have been tested on each
ScenXX, Scen XX.X, GraphXX, and GraphXX.X problem using a Sun UltraSparc IIi 440
Mhz. For sake of clarity, we only show the results on some representative problems.

6.1.1 Results on problems on which all the studied local consistencies hold
(cf. Table 2)

If all the local consistencies studied hold on a constraint network, all the corresponding
filtering algorithms are useless. They waste time to check whether the local consistencies
hold without deleting any inconsistent value. On these problems, the stronger the local
consistency is, the more important is the time wasted.

We can see the consequence of the exponential worst case time complexity of NIC1. On
most of these problems, NIC1 requires a reasonable cpu time. But as we can see on the
problem Scen11, a combinatorial explosion can lead to really prohibitive cpu time for NIC1.

6.1.2 Results on arc inconsistent problems (cf. Table 3)

When arc consistency is sufficient to detect the inconsistency of the problem, stronger local
consistencies are not always more costly. On Figure 3 we can see that Max-RPC1 has
often the best cpu time performances and on Graph06 for example, AC7 is one of the
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AC7 RPC2 PIC2 Max-RPC1 SAC1 SRPC1 NIC1
Scen07 0.42 0.43 0.44 0.09 0.59 0.47 1.89

Graph07 0.11 0.14 0.12 0.16 0.24 0.14 1.08
Scen08 0.75 0.48 0.73 0.4 0.52 0.47 time out

Graph06 0.48 0.27 0.44 0.26 0.27 0.27 10.13

Table 3: Cpu time performances on some arc inconsistent RLFAP instances.

Max-
AC7 RPC2 PIC2 RPC1 SAC1 SRPC1 NIC1

Scen06.1 cpu time 0.27 0.48 0.96 2.04 66.32 227.13 time out
% of DV 7.88 8.33 17.85 19.7 42.47 42.57 ?

Scen09.1 cpu time 0.8 1.52 1.87 5.88 167.85 568.08 318.38
% of DV 22.48 25.79 29.79 31.03 35.86 35.86 31.57

Graph04 cpu time 0.81 2.07 18.65 25.39 2238.13 time out 101.77
% of DV 4.97 6.67 6.95 10.35 18.44 ? 13.14

Graph10 cpu time 1.43 3.32 37.7 51.42 3984.13 time out 2033.39
% of DV 1.43 1.62 1.68 5.42 9.53 ? 7.35

Graph06.1 cpu time 0.39 0.81 0.9 0.8 6.69 3.21 8.54
% of DV 14.96 17.69 100 100 100 100 100

Graph12.1 cpu time 0.73 1.35 2.83 5.41 9.47 32.12 3.97
% of DV 10.42 12.23 15.28 100 100 100 100

Table 4: Cpu time performances and percentages of values deleted by the local consistencies
studied (% of DV) on some RLFAP instances.

most expensive local consistencies. When enforcing AC requires propagation to find the
arc inconsistency of the problem, a stronger local consistency can wipe out a domain more
quickly than AC7.

On these constraint networks, all the algorithms used have very low cpu time require-
ments, except NIC1, which can be very expensive on some instances, such as Scen08.

6.1.3 Results on the other problems (cf. Table 4)

On many of the RLFAP problems the local consistencies do not delete the same sets of
inconsistent values. We can see an important difference between the pruning efficiencies
especially on the problems ScenXX.1 and GraphXX.1.

Obviously, on most of these problems, the more pruningful the local consistency is, the
more important is the time required. We can see this on the problems Scen06.1 and Scen09.1
for example. However, AC7, RPC2, PIC2, and Max-RPC1 have cpu time performances in
the same order of magnitude while SAC1, SRPC1, and NIC1 are often far more expensive.
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This is especially obvious on Graph04 and Graph10. However, it is difficult to say which
is the most interesting local consistency on these problems since even if SAC1, and SRPC1
are costly, we can see on Scen06.1 and Graph04 that they can be far more pruningful.

These problems highlight that NIC1 is not very stable. It sometimes shows good per-
formances, but an exponential explosion can lead to a prohibitive cost on some instances.
When NIC1 requires a reasonable time, its pruning efficiency is closer to the one of Max-
RPC1 than to the one of SAC1. These results confirm that if the neighborhoods of the
variables are not small, NIC1 can be really prohibitive.

On Graph06.1, PIC2 (and obviously the algorithms enforcing a stronger local consis-
tency) finds the inconsistency of the problem whereas AC7, and RPC2 remove only a part
of the inconsistent values. We can see a similar behavior on Graph12.1 where Max-RPC1
wipes out a domain whereas AC7, RPC2 and PIC2 do not find the inconsistency of the
problem. On these instances, Max-RPC1 is the best choice.

6.2 Randomly Generated Problems

The random uniform CN generator of section 5.2 is used to compare the cpu time required
to enforce the local consistencies. We have to point out that NIC has not been designed
to be used on uniform CNs but to adapt filtering effort to the degree of the variables in
the constraint graph. So, NIC would have better performances on non-uniform CNs than
those presented in this section. The generated problems have 200 variables and 30 values
in each initial domain. Figure 8 shows the results on CNs with density of .02. These CNs
are relatively sparse since the variables have four neighbors on average. Figure 9 presents
performances at density .15 (the variables have 30 neighbors on average). Because of the
set of parameters, there are no flawed variables (MacIntyre, Prosser, Smith, & Walsh,
1998) in the generated problems.6 In addition to the algorithms of the previous section, we
use a strong path consistency algorithm based on PC8 (Chmeiss & Jégou, 1996) and AC6.
This algorithm stops as soon as a domain wipe out occurs or as soon as a constraint no
longer allows any pair of values. In addition to the percentage of deleted values and cpu
time performances, Figure 8 and Figure 9 show the cpu time to number of deleted values
ratio for each tightness where the local consistency removes at least one value on average.
For each tightness, 50 instances were generated. Figure 8 and Figure 9 show mean values
obtained on a Pentium II-266 Mhz with 32 Mb of memory under Linux.

As observed in (Gent, MacIntyre, Prosser, Shaw, & Walsh, 1997) for arc consistency,
the filtering algorithms tested have a complexity peak. For low values of the tightness, they
easily prove that the values are locally consistent, and when constraints are very tight, they
quickly wipe out a domain. Each local consistency has a phase transition where most of
the hardest problems for an algorithm achieving this local consistency tend to occur.

6.3 Experiments on Sparse CNs

Even on sparse CNs (see Figure 8), the cpu time results are so different between the al-
gorithms (7h 48min for strong PC at its peak when AC7 requires at most .22 seconds on
average) that a logarithmic scale has to be used. Strong PC is really prohibitive, even for

6. In Section 5.2,the tightness reaching 1, there was obviously flawed variables for some sets of parameters.
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low values of tightness. SRPC and SAC have bad cpu time to number of deleted values
ratios, except SAC on CNs having very tight constraints because the SAC algorithm used
is based on AC6 which can be more efficient than AC7 on such problems. On these sparse
CNs, NIC has often better cpu time performances than SAC but it does not remove more
values than Max-RPC. Consequently, NIC has a bad cpu time to number of deleted values
ratio. Unlike strong PC, SRPC, SAC, and NIC, the cpu time requirements of AC7, PIC2,
RPC2 and Max-RPC are of the same order of magnitude. The cpu time to number of
deleted values ratios of these four last filterings are also very close, with a little advantage
for PIC2. Although PIC is stronger than RPC, PIC2 can be less expensive than RPC2 on
sparse CNs. If there are few 3-cliques in the constraint graph, PIC2 does not require far
more cpu time than AC7 whereas RPC2 is about two times as expensive as AC7 since it
looks for two supports for each value on each constraint.

6.4 Experiments on more Dense CNs

On more dense CNs (see Figure 9), the complexity peaks of AC7, RPC2, PIC2, and Max-
RPC stay close to each other. PIC2 is less worthwhile since it deletes few additional values
compared to RPC2 while its cpu time requirements are close to those of Max-RPC. Max-
RPC has one of the best cpu time to number of deleted values ratios. As soon as RPC
leads to a domain wipe out, the cpu time performances of SRPC and RPC2 merge. Indeed,
the SRPC algorithm used enforces RPC2 before checking the restricted path consistency of
the sub-problems P |Di={a} for each (i, a) ∈ D. If all the values of a domain are restricted
path inconsistent, the RPC preprocessing finds the global inconsistency of the problem and
the SRPC algorithm stops. SRPC is less expensive than strong PC although it is more
pruningful. These two filterings remain the most expensive. NIC is the most pruningful
local consistency on these CNs. Hence, on a large range of tightnesses, NIC has the best
cpu time to number of deleted values ratio. However, on some instances, NIC cannot avoid
the combinatorial explosion. Although NIC requires “only” fifteen minutes on average
at tightness .52, more than two hours are required on some instances. It is conceivable
that instances on which NIC requires far more cpu time exist for this set of parameters.
Obviously, the set of CNs on which NIC is prohibitive grows when the density increases.
The results on SAC have a lower standard deviation. SAC never requires more than fifty
two minutes on the problems generated for these experiments.

6.5 Discussion

What can we conclude from these results? Strong PC is by far the least interesting filtering
technique. Compared to SAC, which removes most of the strong path inconsistent values,
strong PC is really prohibitive.7 Achieving SAC or SRPC is costly as long as these two
local consistencies do not delete any value. Obviously, although SAC and SRPC are more
expensive than Max-RPC on almost all the generated problems, we cannot say that it is
better to use Max-RPC. Indeed, at density .15 for example, Max-RPC is useless for

7. We can point out that when the path consistency of a constraint can be expressed without explicitly
storing the set of forbidden tuples, path consistency can be used (e.g., temporal networks Allen, 1983,
constraint networks Smith, 1992).
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Figure 8: Experimental evaluation on random CNs with n=200, d=30, and p1=.02.
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tightnesses lower than .63 since it does not delete any value, while for SRPC the limit is .57
of tightness. Furthermore, for singleton consistencies we can argue that the algorithm used
to achieve them is not optimal. An algorithm reusing part of the filtering performed on
P |Di={a} to process other sub-problems P |Dj={b}, ((i, a) and (j, b) belonging to D) would
improve cpu time performances. However, the cpu time to number of deleted values ratios of
SAC and SRPC algorithms are often among the worst ones, especially on sparse CNs. SAC
and SRPC are so expensive that it is hardly likely that enhancements of these algorithms
could lead them to be the most worthwhile filterings. On sparse uniform CNs, NIC is not
the best choice. Compared to Max-RPC, it does not delete enough values to offset the
additional cpu time cost. Furthermore, NIC cannot be used on dense CNs since its cpu
time requirements become greater than those of a search algorithm. So, NIC has to be used
only on “relatively” dense CNs, as those of Figure 9 on which NIC is worthwhile on average
(although on some instances a combinatorial explosion cannot be avoided). On very dense
CNs, the worst case time complexity of Max-RPC and PIC2 is close to the one of the best
path consistency algorithm (O(en+ ed2 + cd3) against O(n3d3)). However, the experiments
underline that achieving Max-RPC and PIC2 is far less expensive in practice. Compared
to RPC2 and Max-RPC, PIC2 is not a good solution in-between. The cpu time to number
of deleted values ratios of RPC2 and Max-RPC are better than the one of PIC2 (except on
very sparse CNs on which PIC2 can be less expensive than RPC2). Indeed, PIC2 deletes
only few additional values compared to RPC2, while its cpu time performances are close to
those of Max-RPC.

Cpu time performances are even more essential when the aim is to maintain a local con-
sistency during search. Maintaining a local consistency during search requires to repeatedly
propagate the choice of a value for a variable (namely the restriction of a domain to a
singleton) or the refutation of a value. To be worthwhile, a local consistency has to require
less time to detect that a branch of the search tree does not lead to a solution than a search
algorithm to explore this branch. So, maintaining a local consistency during search can
outperform MAC on hard problems only if this local consistency is more pruningful than
AC while requiring only a little additional cpu time. With regard to this criterion, we can
discard strong PC, SAC, SRPC, and NIC on dense CNs because they are too expensive. It
is conceivable that we can find instances on which maintaining these consistencies during
search outperforms MAC, but the more expensive the maintained local consistency is, the
more seldom the problems on which MAC is outperformed will be. On sparse CNs, NIC is
not prohibitive, but it deletes only few additional values compared to Max-RPC and it has
therefore a bad cpu time to number of deleted values ratio. Finally, The most promising
local consistencies are RPC and Max-RPC. If we exclude arc consistency, RPC is the least
expensive local consistency we studied. Furthermore, the RPC algorithms delete most of
the path inverse inconsistent values. Although Max-RPC is far more pruningful than arc
consistency, experiments show that in practice, Max-RPC has very good cpu time results.
Therefore, it seems very likely that maintaining RPC or Max-RPC during search could
outperform MAC on very hard problems.

To confirm these results, an algorithm called Quick that maintains an adaptation of
Max-RPC has been compared to MAC. The results of these experiments (Debruyne, 1999)
show that Quick has better cpu time performances than MAC on large and hard randomly
generated CNs that are relatively sparse. More interestingly, Quick has a more impor-
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tant stability than MAC (the cpu time performances of Quick have a very low standard
deviation). It would be very interesting to propose efficient algorithms that maintain the
local consistencies studied in this paper and to compare these algorithms. Such a study
would allow us to know whether during search, the more advantageous local consistencies
remain RPC and Max-RPC as during a preprocessing step. First results on the effect of
maintaining SAC during search are given in (Prosser, Stergiou, & Walsh, 2000).

7. Conclusion

In this paper we extended the idea of restricted path consistency to k-RPC and Max-
RPC, which are more pruningful local consistencies. We proposed a new class of local
consistencies called singleton consistencies. We studied these new local consistencies and
the other local consistencies that alike can be used on large CNs while removing more values
than arc consistency. We showed some relations between them and we compared both
theoretically and experimentally their pruning and time efficiencies. The most pruningful
are neighborhood inverse consistency and singleton restricted path consistency. However,
SRPC is expensive in time and the exponential worst case time complexity of NIC makes it
unusable on dense CNs. If we are looking for a local consistency that would advantageously
be maintained during search, RPC and Max RPC seem to be the most promising local
consistencies. Indeed, they are relatively inexpensive and far more pruningful than arc
consistency.
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