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Abstract

We determine the quality of randomized social choice algorithms in a setting in which
the agents have metric preferences: every agent has a cost for each alternative, and these
costs form a metric. We assume that these costs are unknown to the algorithms (and
possibly even to the agents themselves), which means we cannot simply select the optimal
alternative, i.e. the alternative that minimizes the total agent cost (or median agent cost).
However, we do assume that the agents know their ordinal preferences that are induced
by the metric space. We examine randomized social choice functions that require only this
ordinal information and select an alternative that is good in expectation with respect to
the costs from the metric. To quantify how good a randomized social choice function is,
we bound the distortion, which is the worst-case ratio between the expected cost of the
alternative selected and the cost of the optimal alternative. We provide new distortion
bounds for a variety of randomized algorithms, for both general metrics and for important
special cases. Our results show a sizable improvement in distortion over deterministic
algorithms.

1. Introduction

Social choice, and especially the recent field of computational social choice, is a large and
exciting subfield of artificial intelligence research (see, for example, Chevaleyre, Endriss,
Lang, & Maudet, 2007; Brandt, Conitzer, Endriss, Lang, & Procaccia, 2016, for some
surveys and connections with other areas of AI). The goal of social choice theory is usually to
aggregate the preferences of many agents with conflicting interests, and produce an outcome
that is suitable to the whole rather than to any particular agent. This is accomplished via a
social choice function which maps the preferences of the agents, usually represented as total
orders over the set of alternatives, to a single winning alternative. There is no agreed upon
“best” social choice function; it is not obvious how one can even make this determination.
Because of this, much of the social choice literature is concerned with defining normative
or axiomatic criteria, so that a social choice function is “good” if it satisfies many useful
criteria.

Another method of determining the quality of a social choice function is the social welfare
approach, which is often used in welfare economics and algorithmic mechanism design. Here
agents have an associated utility (or cost, as in this paper) with each alternative that is
a measure of how desirable (or undesirable) an alternative is to an agent. We can define
the quality of an alternative to be a function of these agent utilities, for example as the
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sum of all agent utilities for a particular alternative. Other objective functions such as
the median or max utility of the agents for a fixed alternative can be used as well. The
social welfare approach has received a lot of attention recently in the social choice literature
(Caragiannis & Procaccia, 2011; Filos-Ratsikas, Frederiksen, & Zhang, 2014; Harsanyi,
1976; Feldman, Fiat, & Golomb, 2016), see especially the work of Boutilier, Caragiannis,
Haber, Lu, Procaccia, and Sheffet (2015) for a thorough discussion of this approach, its
strengths, and its weaknesses.

A frequent criticism of the social welfare approach is that it is unreasonable to assume
that the algorithm, or even the agents themselves, know what their utilities are. Indeed, it
can be difficult for an agent to quantify the desirability of an alternative into a single number,
but there are arguments in favor of cardinal utilities (Boutilier et al., 2015; Harsanyi, 1976).
Even if the agents were capable of doing this for each alternative, it could be difficult for us to
elicit these utilities in order to compute the optimal alternative. It is much more reasonable,
and much more common, to assume that the agents know the preference rankings induced
by their utilities over the alternatives. That is, it might be difficult for an agent to express
exactly how she feels about alternatives X and Y, but she should know if she prefers X to
Y. Because of this, works including ones by Procaccia and Rosenschein (2006), Boutilier
et al. (2015), Caragiannis and Procaccia (2011), Anshelevich, Bhardwaj, and Postl (2015)
and Feldman et al. (2016) consider how well social choice algorithms can perform when
they only have access to ordinal preferences of the agents, i.e., their rankings over the
alternatives, instead of the true underlying (possibly latent) utilities. The distortion of a
social choice function is defined here as the worst-case ratio of the cost of the alternative
selected by the social choice function and the cost of the truly optimal alternative.

Our goal in this work is to design social choice algorithms that minimize the worst-
case distortion for the sum and median objective functions when the agents have metric
preferences (Anshelevich et al., 2015). That is, we assume that the costs of agents over
alternatives form an arbitrary metric space and that their preferences are induced by this
metric space. Assuming such metric or spatial preferences is common (Enelow & Hinich,
1984), has a natural interpretation of agents liking candidates/alternatives which are most
similar to them, such as in facility location literature (Campos Rodriguez & Moreno Pérez,
2008; Escoffier, Gourves, Thang, Pascual, & Spanjaard, 2011; Feldman et al., 2016), and
our setting is sufficiently general that it does not impose any restrictions on the set of
allowable preference profiles. Anshelevich et al. (2015) provide distortion bounds for this
setting using well-known deterministic mechanisms such as plurality, Copeland, and ranked
pairs. We improve on these results by providing distortion guarantees for randomized social
choice functions, which output a probability distribution over the set of alternatives rather
than a single winning alternative. We show that our randomized algorithms perform better
than any deterministic algorithm, and provide optimal randomized algorithms for various
settings.

We also examine the distortion of randomized algorithms in important specialized set-
tings. Many of our worst-case examples occur when many agents are almost indifferent
between their top alternative and the optimal alternative. In many settings, however,
agents are more decisive about their top choice, and prefer it much more than any other al-
ternative. We introduce a formal notion of decisiveness, which is a measure of how strongly
an agent feels about her top preference relative to her second choice. If an agent is very
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decisive, then she is very close to her top choice compared to her second choice in the metric
space. In the extreme case, this means that the set of agents and the set of alternatives
are identical (Goel & Lee, 2012), as can occur for example when proposal writers rank all
the other proposals being submitted, or when a committee must choose one of its members
to lead it. We demonstrate that when agents are decisive, the distortion greatly improves,
and quantify the relation between decisiveness and the performance of social choice al-
gorithms. Finally, we consider other natural special cases, such as when preferences are
1-Euclidean and when alternatives are vertices of a simplex. 1-Euclidean preferences are
already recognized as a well-studied and well-motivated special case (Elkind & Faliszewski,
2014; Procaccia & Tennenholtz, 2013). The setting in which alternatives form a simplex
corresponds to the case in which alternatives share no similarities, i.e., when all alternatives
are equally different from each other.

1.1 Our Contributions

In this paper, we bound the worst-case distortion of several randomized social choice func-
tions in many different settings. Recall that the distortion is the worst-case ratio of the
expected value of the alternative selected by the randomized algorithm and the optimal al-
ternative. We use two different objective functions for the purpose of defining the quality of
an alternative. The first is the sum objective, which defines the social cost of an alternative
to be the sum of agent costs for that particular alternative. We also consider the median
objective, which defines the quality of an alternative as the median agent’s cost for that
alternative.

We summarize our results in Table 1. Note that for the sum objective, these results are
also given for a-decisive metric spaces. A metric space is a-decisive if for every agent, the
cost of her first choice is less than « times the cost of her second choice, for some « € [0, 1].
In other words, this provides a constraint on how indifferent an agent can be between her
first and second choice. By definition, any agent cost function is 1-decisive. Considering
a-decisive metric spaces allows us to immediately give results for important subcases, such
as 0-decisive metric spaces in which every agent has distance 0 to her top alternative, i.e.,
every agent is also an alternative.

For the sum objective function, we begin by giving a lower bound of 1 + « for all
randomized algorithms, which corresponds to a lower bound of 2 for general metric spaces.
This is smaller than the lower bound of 3 for deterministic algorithms from Anshelevich
et al. (2015). One of our first results is to show that randomized dictatorship has worst-case
distortion strictly better than 3, which is better than any possible deterministic algorithm.
Furthermore, we show that a generalization of the “proportional to squares” algorithm is
the optimal randomized algorithm when there are two alternatives, i.e., it has a distortion
of 1+ a.

We also examine how well randomized algorithms perform in important subcases. We
consider the well-known case in which all agents and alternatives are points on a line with
the Euclidean metric, known as 1-Euclidean preferences (Elkind & Faliszewski, 2014). We
give an algorithm, which heavily relies on proportional to squares, to achieve the optimal
distortion bound of 1 + « for any number of alternatives. We also consider a case first
briefly described by Anshelevich et al. (2015), known as the (m — 1)-simplex setting, in
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Sum Median
General a-Decisive General
General RD:3—2 24+a—2 USMC: 4
1-Euclidean 1-D Prop. to Squares: 2 | 1 + « Condorcet: 3
Simplex Prop. to Squares: 2 % <1 + o+ ﬂ\/ﬁ) Magjority cons.: 2
Lower Bounds | 2 1+« 1-FEuclidean: 3

Table 1: The worst-case distortion of our social choice algorithms are given for both the sum
and median objective functions in various settings. In the general setting, all randomized
algorithms have a lower bound of 2 and 3 for the sum and median objective functions,
respectively. For the a-decisive setting with the sum objective function, no randomized
algorithm can have distortion better than 1 + «.

which the alternatives are vertices of a simplex and the agents lie in the simplex. This
corresponds to alternatives sharing no similarities. We are able to show that proportional

to squares achieves worst-case distortion of % (1 +a+vV2Va? + 1), which is fairly close to
the optimal bound of 1 + «. For details, see Section 3.3.

Our other major contribution is defining a new randomized algorithm for the median
objective which achieves a distortion of 4 in arbitrary metric spaces (we call this algorithm
Uncovered Set Min-Cover, or USMC for short). This requires forming a very specific dis-
tribution over all alternatives in the uncovered set, and then showing that this distribution
ensures that no alternative “covers” more than half of the total probability of all alter-
natives. We do this by taking advantage of LP-duality combined with properties of the
uncovered set. We believe that this algorithm is interesting on its own, as it is likely to
have other nice properties in addition to low median distortion.

1.2 Related Work

Embedding the unknown cardinal preferences of agents into an ordinal space and measur-
ing the distortion of social choice functions that operate on these ordinal preferences was
first done in the work of Procaccia and Rosenschein (2006). Additional papers (Boutilier
et al., 2015; Caragiannis & Procaccia, 2011; Oren & Lucier, 2014; Anshelevich et al., 2015;
Feldman et al., 2016; Goel, Krishnaswamy, & Munagala, 2016; Filos-Ratsikas & Miltersen,
2014) have since studied distortion and other related concepts of many different algorithms
with various assumptions about the utilities/costs of the agents. In this context, Anshele-
vich et al. (2015) introduced the notion of metric preferences, which assumes that the costs
of the agents and alternatives form a metric. For this setting, Anshelevich et al. (2015)
proved that while various scoring rules such as Plurality and Borda can have very large
distortion, the Copeland social choice function always has distortion at most 5, and in fact
no deterministic social choice function can have worst-case distortion better than 3. For the
median distortion objective, they proved that Copeland still achieves distortion of 5, and in
fact no deterministic function can have worst-case distortion better than 5; thus in terms of
worst-case distortion Copeland is optimal for this objective. We further extend their work
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by considering randomized algorithms instead of deterministic ones and exploring special
types of metrics. The randomized algorithms we provide have smaller expected distortion
than the deterministic algorithms from Anshelevich et al., and in fact sometimes perform
better than any deterministic algorithm possibly could.

Using algorithms to select alternatives from a metric space when the true locations
of agents is unknown is also reminiscent of facility location games (Campos Rodriguez
& Moreno Pérez, 2008; Escoffier et al., 2011). However, we select only a single winning
alternative in our setting, while in these papers, they select multiple facilities.

Pivato (2016) demonstrates that social choice functions like Borda and approval voting
are able to maximize utilitarian social welfare with high probability, when the agents satisfy
certain properties. Rivest and Shen (2010) use a game-theoretic model to compare two
voting systems and develop a randomized algorithm that is always preferred to any other
voting system.

Assuming that the preferences of agents are induced by a metric is a type of spatial
preference (Enelow & Hinich, 1984; Merrill & Grofman, 1999). There are many other notions
of spatial preferences that are prevalent in social choice, such as 1-Euclidean preferences
(Elkind & Faliszewski, 2014; Procaccia & Tennenholtz, 2013), single-peaked preferences
(Sui, Francois-Nienaber, & Boutilier, 2013), and single-crossing (Gans & Smart, 1996). We
consider 1-Euclidean preferences as an important special case of the metric preferences we
study in this paper.

Randomized social choice was first studied in the work of Zeckhauser (1969), Fishburn
(1972), and Intriligator (1973). A similar setting was considered by Fishburn and Gehrlein
(1977), in which agents are uncertain about their preferences and express their preferences
using probability distributions. We consider several randomized algorithms, such as ran-
domized dictatorship (Chatterji, Sen, & Zeng, 2014); other randomized voting algorithms
have been used in the work of Procaccia (2010) and Brandl, Brandt, and Seedig (2016).
The use of randomized algorithms is seen very frequently in literature concerning one-sided
matchings. Random serial dictatorship and probabilistic serial are perhaps the most well-
studied randomized algorithms, and there is a significant amount of literature on them
(e.g., Bogomolnaia & Moulin, 2001; Aziz, Brandt, & Brill, 2013; Aziz & Stursberg, 2014;
Chakrabarty & Swamy, 2014; Christodoulou, Filos-Ratsikas, Frederiksen, Goldberg, Zhang,
& Zhang, 2016; Filos-Ratsikas et al., 2014). In particular, the results of Filos-Ratsikas et al.
(2014) and Anshelevich and Sekar (2016) are analogous to finding the distortion of matching
algorithms.

Related to the notion of randomized social choice functions are proportional representa-
tion voting systems in which there are multiple winners (Monroe, 1995; Nandeibam, 2003;
Skowron, Faliszewski, & Slinko, 2015; Chamberlin & Courant, 1983). Selecting multiple
winners is conceptually similar to having a probability distribution over a set of alterna-
tives. Skowron et al. (2015) consider approximation algorithms to multiwinner rules that
seek to maximize global objective functions, but are NP-hard to solve.

Finally, independently and simultaneously with this work, Feldman et al. (2016) have
also considered the distortion of randomized social choice functions. While they mostly focus
on truthful algorithms (i.e., the “strategic” setting), there is some intersection between our
results. Specifically, Feldman et al. also give a bound of 3 (and a lower bound of 2) for
arbitrary metric spaces in the sum objective, and also provide an algorithm with distortion
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2 for the 1-Euclidean case. The latter algorithm is quite different from ours, however: ours
seems to be somewhat simpler, but the algorithm from Feldman et al. has the advantage
of being truthful. However, Feldman et al. do not consider either a-decisive agents or
the median objective: showing better performance for decisive agents and designing better
algorithms for the median objective are two of our major contributions; which were not
considered by Feldman et al. at all. Moreover, our distortion upper bounds are proven
using a somewhat general technique (see Lemma 4), which may be of use to form other
results (it has already been used in followup work, see Gross, Anshelevich, & Xia, 2017).
Two other papers considered the distortion of randomized algorithms after the conference
version of our paper was published. Goel et al. (2016) showed a lower bound of 3 for
distortion of any randomized tournament mechanism, which includes Copeland and similar
mechanisms. Gross et al. (2017) provided new randomized mechanisms with low distortion,
but only for a small number of candidates.

2. Preliminaries

In this section we begin by defining our precise model.

2.1 Social Choice with Ordinal Preferences

Let N = {1,2,...,n} be the set of agents, and let M = {A;, As,..., Ay} be the set of
alternatives. Let & be the set of all total orders on the set of alternatives M. We will
typically use ,j to refer to agents and W, XY, Z to refer to alternatives. Every agent
i € N has a preference ranking o; € S; by X »=; Y we will mean that X is preferred over Y
in ranking o;. We call the vector o = (01,...,0,) € 8™ a preference profile. We say that
an alternative X pairwise defeats Y if |[{i € N : X »=; Y'}| > §. Furthermore, we use the
following notation to describe sets of agents with particular preferences: XY = {i € N :
X=Yland X*={ie N: X ;Y forall Y # X}.

Once we are given a preference profile, we want to aggregate the preferences of the
agents and select a single alternative as the winner or find a probability distribution over
the alternatives and pick a single winner according to that distribution. A deterministic
social choice function f : S™ — M is a mapping from the set of preference profiles to the set
of alternatives. A randomized social choice function f :S™ — A(M) is a mapping from the
set of preference profiles to the space of all probability distributions over the alternatives
A(M). Some well-known social choice functions which we consider in this paper are as
follows.

¢ Randomized dictatorship/plurality: The winning alternative is selected accord-
ing to the following probability distribution: for all alternatives Y € M,
Y=
Y)= .
p(Y) ="~

e Proportional to squares. The winning alternative is selected according to the
following probability distribution: for all alternatives Y € M,

2

pl¥) = > zem |2
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e Condorcet method: A weak Condorcet winner is defined as the alternative that
either pairwise defeats or pairwise ties every other alternative. There can be multiple
weak Condorcet winners. A Condorcet winner must pairwise defeat every other alter-
native; there can be at most one Condorcet winner. Neither weak Condorcet winners
nor Condorcet winners are guaranteed to exist. A Condorcet method is any social
choice function that is guaranteed to select a Condorcet winner, if it exists.

e Majority method: A majority winner is an alternative that is ranked as the first
preference of strictly more than § agents. A majority method is any method that will
select the majority winner, if it exists.

2.2 Cardinal Metric Costs

In our work we take the social welfare view, and study the case when the ordinal preferences
o are in fact a result of the underlying cardinal agent costs. Formally, we assume that there
exists an arbitrary metric d : (NUM)? — R>q on the set of agents and alternatives (or more
generally a pseudo-metric, since we allow distinct agents and alternatives to be identical
and have distance 0). Here d(i, X) is the cost incurred by agent i when alternative X is
selected as the winner; these costs can be arbitrary but are assumed to obey the triangle
inequality. The metric costs d naturally give rise to a preference profile. Formally, we say
that o is consistent with d if Vi € N,VX,Y € M, if d(i,X) < d(i,Y), then X >; Y. In
other words, if the cost of X is less than the cost of Y for an agent, then the agent should
prefer X over Y. When d(i, X) = d(i,Y), then both X >; Y and Y >; X are considered
consistent with the costs of i. Let p(d) denote the set of preference profiles consistent with
d (p(d) may include several preference profiles if the agent costs have ties). Similarly, we
define p~!(o) to be the set of metrics such that o € p(d).

2.3 Social Cost and Distortion

We measure the quality of each alternative using the costs incurred by all the agents when
this alternative is chosen. We use two different notions of social cost. First, we study the
sum objective function, which is defined as SC(X,d) =}, y d(i, X) for an alternative X.
We also study the median objective function, med(X, d) = med;cn(d(i, X)). Since we have
defined the cost of alternatives, we can now give the cost of an outcome of a deterministic
social choice function f as SC(f(o0),d) or med(f(o),d). For randomized functions, we
define the cost of an outcome, which is a probability distribution over alternatives, as
follows: SC(f(0),d) = Ex f() [SC(X,d)] = > xepn P(X)SC(X,d) and med(f(0),d) =
Ex~f(o) [med(X,d)] = > xcpr p(X) med(X, d), where p(X) is the probability of alternative
X being selected, according to f(o). When the metric d is obvious from context, we will
use SC(X) and med(X) as shorthand.

As described in the Introduction, we can view social choice algorithms in our setting
as attempting to find the optimal alternative (one that minimizes cost), but only having
access to the ordinal preference profile o, instead of the full underlying costs d. Since it
is impossible to compute the optimal alternative using only ordinal preferences, we would
like to determine how well the aforementioned social choice functions select alternatives
based on their social costs, despite only being given the preference profiles. In particular,
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(1+¢) O 1-¢)

n n
5 agents 5 agents

Figure 1: There are 5 agents located at X who prefer X and § agents between X and Y

who prefer Y. As € — 0, the expected distortion of randomized dictatorship approaches 2.

we would like to quantify how the social choice functions perform in the worst-case. To do
this, we use the notion of distortion from the work of Procaccia and Rosenschein (2006)
and Boutilier et al. (2015), defined as follows.

. - SC(f(o),d)
dlStZ(fa U) - dEfll_l?(U) minXEM SC(X7 d)

: med(f(o),d)
distmeda(f,0) = su - .
alf. o) dEp*?(o) miny ey med(X, d)

In other words, the distortion of a social choice algorithm f on a profile ¢ is the worst-
case ratio between the social cost of f(o), and the social cost of the true optimum alternative.
The worst-case is taken over all metrics d which may have induced o, since the social choice
function does not and cannot know which of these metrics is the true one.

2.3.1 EXAMPLES

To illustrate some of the behavior arising in our setting, and to build intuition, here we
consider a simple example. Consider the setting in Figure 1 with only two alternatives, X
and Y. The preferences are tied: 5 agents prefer X to Y, and 5 prefer Y to X. The ordinal
social choice functions we consider do not know anything else; a deterministic function
would be forced to choose a specific alternative (without loss of generality suppose it is
Y'), while randomized dictatorship would choose each alternative with probability % The
true, underlying costs could be as follows, however: 5 agents have cost 0 for X and 2 for V'
(these are located “on top of” X'), while § agents have cost 1+ ¢ for X and 1 — ¢ for Y, for
some very small € (these are located “between X and Y”). Then X is the true optimum
solution: the total social cost of X is (1 + €)%, while the social cost of Y is (3 — ¢€)F.
Thus, any deterministic function selecting ¥ has (sum) distortion approaching 3 as € — 0,
while randomized dictatorship has expected distortion approaching % -1+ % -3 = 2 for this
example.

For the median objective, suppose instead that there is an odd number of agents, with
[5] preferring Y and | §] preferring X, as seen in Figure 2. Any reasonable social choice
function would select Y; randomized dictatorship would once again mix about equally
between X and Y. However, the true numerical costs can be as follows: |5 | have cost 0 for
X and 2 for Y, one agent has cost 1 — ¢ for Y and 1 + ¢ for X, and [ %] have cost of 2 for
Y and 4 for X. The median agent cost for X is approximately 1, while the median agent
cost for Y is 2. Thus, X is the optimum solution, but random dictatorship only chooses it
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4
2
1+ — —(-a9—Y 2
|5 ] agents One agent |5 ] agents

Figure 2: There are [%5] agents located at X who prefer X, one agent between X and Y’
that prefers Y, and |5 | agents far from either alternative that prefer Y. As e — 0, the

expected distortion of randomized dictatorship is %

with probability about % For more examples and lower bounds on possible distortion, see
Theorems 1 and 12.

2.4 Decisive Agents

Many of our worst-case examples occur when many agents are indifferent between their top
alternative and the optimal alternative. In many settings, however, agents are more decisive
about their top choice, and prefer it much more than any other alternative. Formally,
we say that an agent ¢ whose top choice is W and second choice is X is a-decisive if
d(i, W) < a-d(i,X) where a € [0,1]. We say that a metric space is a-decisive if for some
fixed «, every agent is a-decisive. Every metric space is 1-decisive, while a metric space
in which every agent has distance 0 to her top alternative is O-decisive. In fact, 0-decisive
metric spaces are interesting in their own right: they include the case when each agent
must exactly coincide with some alternative, and so capture the settings where the set of
agents and alternatives is the same. This occurs when every agent corresponds to a possible
alternative, such as when a committee must vote to choose one of its members to lead it,
or when writers of NSF proposals vote for each others’ proposals to be funded.

Note that when talking about a-decisive metrics, p~!(o) denotes the set of all a-decisive
metrics d such that o is consistent with them (as opposed to the set of all such possible
metrics). Thus, when we consider distortion in the a-decisive setting, it measures the
quality of an algorithm with only ordinal knowledge, as compared to the quality of the true
optimum solution, assuming that the underlying metric is a-decisive.

3. Distortion of the Sum of Agent Costs

In this section we study the distortion with the quality of a candidate being measured by
the sum of agent costs for this candidate.

3.1 General Metric Spaces

In this section, we examine the sum objective and provide algorithms with low distortion.
We first show that for general metric spaces, the randomized dictatorship algorithm has a
distortion of less than 3, which is better than any deterministic algorithm, since all deter-
ministic algorithms have a worst-case distortion of at least 3 (Anshelevich et al., 2015). We
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then consider the case of two alternatives, and give the best possible randomized algorithm
for this special case. As it is more general, we consider the a-decisive setting: results for
arbitrary metric spaces are simply the results for 1-decisive agents. In all of our results, we
observe that the worst-case distortion is linearly dependent on a: the more decisive agents
are, the better our algorithms are able to perform.

We begin this section by addressing the question of how well any randomized social
choice function can perform. Our first theorem shows that no randomized algorithm can
find an alternative that is in expectation within a factor strictly smaller than 14 « from the
optimum alternative for a-decisive metric spaces. Thus no algorithm can have distortion
better than 2 for general metric spaces. In comparison, the best known distortion lower
bound for deterministic algorithms is equal to 3 (from Anshelevich et al., 2015). Note that,
independently from us, the work of Feldman et al. (2016) showed a similar lower bound to
the one below using similar techniques; since the construction is rather simple we include
it for completeness. In fact, the same result also follows from the fact that we can consider
only the set anonymous and neutral mechanisms without loss of generality (e.g., Filos-
Ratsikas & Miltersen, 2014), which implies that the election probabilities of alternatives
that are the same up to permutations of voters should be the same, which in turn implies
the desired bound.

Theorem 1 The worst-case distortion of any randomized algorithm when the metric space
18 a-decisive is at least 1 + .

Proof. We must show that there exists a preference profile such that for all randomized
algorithms, there always exists an a-decisive metric space that induces the preference profile
and the distortion is at least 1 + a. We will consider a preference profile with m = 2
alternatives W, X and n agents (n is even) where § agents prefer W over X and % agents
prefer X over W. We claim that no randomized algorithm can have distortion less than
1 + « for all metric spaces that induce this profile.

First, we will consider an a-decisive metric space that induces the preference profile

and where X is optimal. All agents ¢ who prefer X have d(i,X) = 0 and d(i,\W) =

1. The remaining agents have d(i, W) = 13,d(i,X) = 14—% Thus, SC(X) = %p%a
and SC(W) = Z(135 +1). The distortion of selecting alternative W is % =1+

2a. Obviously the distortion of selecting the optimal alternative X is 1. Thus, for any
randomized algorithm, the distortion is p(X) + p(W)(1 4 2a), where p(X),p(W) are the
probabilities of the randomized algorithm selecting X and W, respectively.

Next, we claim there exists a similar a-decisive metric space that induces the preference
profile and where W is optimal in which the distortion is p(W) 4+ p(X)(1 + 2«). This is
simply the “reverse” of the above space, obtained by switching W and X in the distance
function.

Since the algorithm does not know the metric space (or which of X, W is optimal),
it cannot obtain a worst-case distortion better than max(p(X) + p(W)(1 + 2a),p(W) +
p(X)(1 + 2a)) since either metric space could have induced the preference profile. Clearly,
the worst-case distortion is minimized when

p(X) +p(W)(1 +2a) = p(W) + p(X)(1 + 2a).
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This reduces to p(W) = p(X) = 3. We observe that p(X) + p(W) (1 +2a) = 1 + « in this
case, which gives us the desired lower bound. ]

We will now prove several helpful lemmas that are necessary in order to upper-bound the
worst-case distortion of our randomized social choice algorithms. Our first lemma provides
a refinement over the standard bound of d(i, W) > £d(W,Y’) (from Anshelevich et al., 2015)
for agents that prefer Y to W when the agents are in a-decisive spaces and Y is their first
preference as well. As we will see, this latter requirement does not impede our ability to
find better lower bounds for the optimal alternative in a-decisive metrics.

Lemma 2 If a metric space is a-decisive, then for all alternatives W # Y, d(i,W) >
14% -d(W,Y), for every agent i € Y*.

Proof. Consider an a-decisive agent ¢ with top choice Y and second choice Z. W is an
alternative, different from Y. By definition, d(i,Y) < «a-d(i,Z) < « - d(i, W). Using this
observation and the triangle inequality, we can derive that

d(i, W) > d(W,Y) — d(i,Y)
> d(W,Y) — a-d(i, W),

which implies that d(i, W) > =d(W,Y). [

We can now derive an improved lower bound of the social cost of the optimal alternative
X. This is done by applying Lemma 2 to every agent (and with alternative W in the lemma
being set to X) and summing the resulting inequalities.

Lemma 3 If a metric space is a-decisive, then for any alternative X € M, SC(X) >
Tra Lven |V d(X,Y).

Our next lemma is the first pertaining to upper-bounding the worst-case distortion
of randomized social choice functions. This lemma parameterizes the distortion by the
probability distribution over the alternatives. Thus, it is easily used to quickly bound
the distortion for several randomized social choice functions by simply plugging in the
appropriate probabilities for each alternative Y.

Lemma 4 For any instance o, social choice function f, and a-decisive metric space,

(14 «) EYGMP(Y)(n - H%D/*Dd(Xv Y)
Dyen |YHd(X,Y) 7

where X is the optimal alternative and p(Y') is the probability that alternative Y is selected
by f given profile o.

dists~(f,0) <1+

Proof. Consider an alternative Y # X: we want to upper-bound SC(Y'). For all i € Y*,
we know that d(i,Y) < « - d(i, X) by the definition of a-decisiveness. More generally, for
i € YX, we have a weaker bound of d(i,Y) < d(i, X). Finally, for i € XY, we can use the
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triangle inequality to obtain d(i,Y") < d(i, X)+d(X,Y). Combining these three inequalities
together, we are able to derive

= d(i,Y)

iEN
<o diX)+ Y dEX)+ > (dEX) +d(X,Y)
ieYy'* €Y X\Y* ieXY
= d(, X) + [ XY]d(X,Y) - (1 —a) > d(i, X)
1EN 1EY*
= di,X)+ (n— [YX))A(X,Y) — (1 —a) Y _ d(i,X).
1EN ey

We know that |Y X| > |Y*|. Furthermore, by Lemma 2, we know that for ¢« € Y*, d(i, X) >
1J%Olal(X ,Y'). We can apply these two bounds to our previous expression to conclude that

¥) < S i, X) + (n— [¥*Dd(X,Y) - (X, V)
iEN
— SC(X) + (n - 1ioé|y*|> d(X,Y). (1)

In addition to an upper bound for SC(Y') where Y # X, we need a lower bound for the
cost of the optimal alternative X. By Lemma 3, we have that

SC(X) > 1+1a ST Y- d(X,Y). (2)
YeM

With these two inequalities, we are now able to bound the distortion as follows:

dists~(f,0) = ZYGMSZé((Z())SC(Y)
Sy px P(Y) (SC(X) + (n — Z5|V*]) d(X,Y)
<p(X)+ v#x P ( SC<<X) T+ ) ) (Due to Tneq. (1))
) (1 V) 051
i SC(X)
Dyzxp(Y) (n < 1Jra|Y*y> (X,Y)
< H% S e V7] - d(X,Y) (Due to Ineq. (2)),
which gives us the desired result. .

The following theorem is our main result of this section. It states that in the worst case,
the distortion of randomized dictatorship is strictly better than 3 (in fact, it is at most 3— %,
which occurs when o = 1,|W*| = 1 in the theorem below). Thus, this simple randomized
algorithm has better distortion than any deterministic algorithm, since no deterministic
algorithm can have distortion strictly better than 3 in the worst case (Anshelevich et al.,
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2015). This is surprising for several reasons. First, randomized dictatorship only operates
on the first preferences of every agent: there is no need to elicit the full preference ranking
of every agent, only their top choice. Second, randomized dictatorship is strategy-proof,
unlike many deterministic algorithms. Finally, randomized dictatorship can be thought
of as a randomized generalization of plurality or dictatorship. Both of these determinis-
tic algorithms have unbounded distortion, which means that adding some randomization
significantly improves the distortion of these algorithms.

Theorem 5 If a metric space is a-decisive, then the distortion of randomized dictatorship
is at most 2+ a — W |, where W = arg miny e pr.|y+|>0 |Y*|, and this bound is tight.

Proof. Let X be the optimal alternative. We first apply Lemma 4 and then use the
definition of |W*|:
(1+ ) Xyen p(Y)(n — 5 Y*)d(X,Y)

Dvenm Y¥d(X,Y)
<14 (I4+a)> yenpY)(n— 1+a‘W*|) (X,Y)
- Yyvem [Y*d(X,Y)

y* %

(I+a)dXyem % (” — W |) d(X,Y)

Yyem [Y*d(X,Y)
(1+a) (1 - Z00) Yy e YJd(X, Y)

Yoyenm [YHA(X,Y)
2|W|

distz(f,()') <1+

=1+

=14+

=24+a-—

We will now show that this bound is tight, using a generalized example of Figure 3. To
do this, we must show that there exists a preference Froﬁle induced by an a-decisive metric
space where the distortion is at least 2 + o — . We consider a preference profile in
which there are two alternatives W, X such that \W*| < | X*|. We will now show that there
exists an a-decisive metric space that induces this profile that achieves the aforementioned
distortion.

All agents i who prefer X have d(i, X) = 0 and d(i, W) = 1. The remaining agents have

d(i,W) = 35,41, X) = IJ%Q Clearly, all of the agents are a-decisive. We observe that
SC(X) = |W | and SC(W) = QJT;‘ + |X*|. Thus, the distortion of randomized dictatorship

is

p(X)SC(X) +p(W)SC(W) _ |X*| W] | &5 (W] + [ X7

SC(X) n n 1JraH/V*|
_ (4 a)| X[+ a[W7| + [ X7

n
_ 2+ a)(n = W) + oW

N n

:2—1—04—%.

n
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n — 1 agents One agent

Figure 3: Consider the case where o = 1 and |W*| = 1. There are n — 1 agents located at
X who prefer X and one agent between X and W who prefers W. As e — 0, the worst-case

distortion of randomized dictatorship approaches 3 — %

While randomized dictatorship performs well, it still does not achieve the lower bound
on distortion of 14 « for randomized algorithms. In general, we do not know of randomized
algorithms that can achieve this bound. However, we will now define an optimal algorithm
for a-decisive metric spaces when there are m = 2 alternatives. This algorithm is a general-
ization of proportional to squares that is parameterized by «. For a = 1, the algorithm is in
fact ordinary proportional to squares. This algorithm addresses the worst cases of random-
ized dictatorship by placing more probability on alternatives that receive vast majorities of
the votes, if they exist.

3.1.1 a-GENERALIZED PROPORTIONAL TO SQUARES
We will provide a generalization of the proportional to squares algorithm for m = 2 that is
also a function of a. An alternative Y is selected with probability
(L+ )Y * = (1 — )| XY
(1 + o) (| X2+ [Y*[?) = 2(1 = a)[ X*[|Y*|"

p(Y) =
where X is the second alternative.

Theorem 6 If a metric space is a-decisive and m = 2, then the distortion of a-generalized
proportional to squares is 1 + «, and this is tight.

Proof. Suppose X is optimal, and Y is the second alternative. By Lemma 4, we have
that the distortion is at most

L A+ ep)(n - el Dd(X, Y)

[Y*|d(X,Y)

Then, in order to bound the distortion, it suffices to simply use the fact that n = | X*|+|Y™|
and plug in p(Y). We obtain a distortion of at most

(1 +a)p(YV)(IX*| + [Y*] = 5 [Y*Dd(X,Y)

14 B
[Y*[d(X,Y)
(1+a)(|X*| = 22 Y ) (L +a)|[Y*| = (1 — )| X*))

(14 a)([X*2 + [Y*[?) = 2(1 — o) | X*[|Y¥|
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2(1+ o®)[XHYV* = (1+ ) (1 — a)(|X* ] + [Y*?)
(14 a)(|X*2 + [Y*[?) = 2(1 — o) [ X*| Y|
(1+a) (oz|Y*|2 +a| X*2 + 204]X*||Y*])
(1+ a) (| X2+ [Y*2) — 2(1 — o) [ X*[|[Y*[

=1+

In order to complete our proof, we must show that the numerator is at most a factor of
1 + « larger than the denominator. We claim that

V' + al X + 20| XY < (1+ @) (IX7 + [YV?) = 2(1 — )| XY

This follows from the fact that | X*|> + |[Y*|? — 2|X*||[Y*| = (]X*| — |Y*])? > 0. Thus, the
distortion is at most 1 + «, as desired. [ |

3.2 1-Euclidean Preferences

We now consider the well-known and well-studied special case of 1-Euclidean preferences
(Elkind & Faliszewski, 2014; Procaccia & Tennenholtz, 2013) in which all agents and alter-
natives are on the real number line and the metric is defined to be the Euclidean distance.
First, we observe that in this setting, a Condorcet winner always exists, so the distortion is
at most 3, and this is tight for deterministic algorithms. This is true due to the results of
Anshelevich et al. (2015), which state that when the alternative chosen pairwise defeats the
optimal alternative, then the distortion is at most 3. In designing an optimal randomized
algorithm, we heavily use properties of this metric space from the work of Elkind and Fal-
iszewski (2014). Namely, using only the preference profile, we can determine the ordering of
the agents on the line (which is unique up to reversal and permutations of identical agents)
and the unique ordering of the alternatives that are between the top preference of the first
agent and the top preference of the last agent. While this information is not enough to
find the optimal alternative, using this information we will be able to significantly reduce
the set of alternatives that can be optimal. Then we will use a-generalized proportional to
squares on this restricted set of alternatives to achieve a better distortion bound. Our full
algorithm is specified as Algorithm 1.

We will now show that this algorithm has worst-case distortion at most 1 4+ « through
a series of steps in which we reduce the set of possible optimal alternatives from m to 2. In
our first lemma, we show that the optimal alternative must be one of the two alternatives
on either side of the median agent from our agent ordering. One of these alternatives must
be the top preference of the median agent. However, since we do not know if the median
agent’s top preference is to the left or right of it, we must consider three alternatives: her
top preference and the two alternatives on either side of the top preference. This reduces
our set of optimal alternatives from m to 3.

Lemma 7 In the 1-Euclidean setting, consider the median agent i'. Let this agent’s top
preference be X. Call the alternatives directly to the left and to the right of this alternative
Y and Z, respectively. Then X,Y or Z must be optimal.

n

Proof. Suppose that X is to the left of the median agent. Then X has x > 7 agents
to the right of it who prefer X over Y. For these agents ¢, d(i,Y) = d(i, X) + d(X,Y),
while the remaining n — x agents ¢ have d(i, X) < d(i,Y) +d(X,Y). Thus, >,y d(i, X) <
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Algorithm 1 Optimal randomized algorithm for the a-decisive, 1-Euclidean space

Input: A preference profile o
Output: A probability distribution p over the alternatives
> n< ordering of the agents (Elkind & Faliszewski, 2014)
> ¢ ordering of the alternatives (Elkind & Faliszewski, 2014)
i’ + median agent of >y
X < top preference of i/
Y « alternative directly to the left of X in >,
Z <+ alternative directly to the right of X in >
if |[YX| < |ZX]| then
o(Z) (1+a)|ZX* - (1-)|XZ||ZX|
(1+a)(|XZ* +|1ZX*) —2(1 — )| X Z||ZX]|
(1+a)|XZ?-(1-)|XZ||ZX|
PX) X ZE +1ZXP) —2(1 — o) XZ]| ZX]
else if |YX| > |ZX| then
(1+a)|YX|?—(1—a)XY||]YX]

p(Y) (1+a)(| XY+ |YX)?) —2(1 — )| XY||[YX]|
(1+a)|XY]?—(1-a)|XY||]YX]
p(X) < A+ a)((XYPFYXP) —2(1— o)XYV X|
else
p(X) <1
end if

Yoien d(@,Y)—2-d(X,Y)+(n—x)-d(X,Y) <>,y d(i,Y), which implies that the quality
of X is always at least as good as Y. This same argument can be used for any alternative
to the left of X.

We observe that if X is to the left of the median agent, Z must be to the right of the
median agent because if not, then the median agent would prefer Z over X. Since at least
5 agents to the left of Z prefer it over any alternative to the right of it, we can use the
same argument to show that Z is better than all of these alternatives. Thus, X or Z must
be optimal.

Finally, if X is to the right of the median agent, we can show that X or Y must be the
optimal alternative. However, since it is not possible to determine if X is to the left or to

the right of the median agent, then we know that one of X, Y, or Z must be optimal. ®

Next, we show that we can further reduce the set of possible optimal alternatives from
3 to 2.

Lemma 8 If|YX| < |ZX]|, thenY cannot be better than X, and if |ZX| < |Y X|, Z cannot
be better than X.

Proof. Suppose, without loss of generality, that |Y X| < |ZX]|. Then, since all agents in
Z X must be to the right of X, we have that

Y d(,X)= > (dE,Y)—d(X, V) + Y d(i, X)

ieN i€ZX i¢ZX
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< ) @EY) —dX, YY)+ Y dEY)+ Y (dE,Y) +d(X,Y))

1€ZX e X* €Y X
= d(i,Y) - |ZX|d(X,Y) + [V X|d(X,Y)
iEN
<> d(i,Y).
iEN

Note that ZX and Y X are disjoint, since agents in ZX must be to the right of X and
agents in Y X must be to the left of X. Because of this, the third transition above is an
equality. Thus, we have shown that Y cannot be better than X. [ |

Finally, we can use the a-generalized proportional to squares algorithm on the restricted
set of alternatives X and one of Y, Z to achieve a distortion of 1 4+ «, which is tight since
our lower bound example from Theorem 1 occurs in the 1-Euclidean setting. In the event
that |V X| = |ZX]|, then we can select X with probability 1, since neither ¥ nor Z can be
better than X.

Theorem 9 In the 1-FEuclidean setting, Algorithm 1 has distortion at most 1+ «, and thus
has the best possible worst-case distortion.

Proof. Let X,Y,Z be as defined in the algorithm. If |Y X| = |ZX|, then by Lemma 8 it
must be that X has better social cost than Y or Z, and by Lemma 7, this means that X
must be the optimum outcome. Therefore, our algorithm selects X with probability 1, and
achieves distortion of 1.

Now suppose that |Y X | > |ZX]|, without loss of generality. By Lemma 8 this means that
X has better social cost than Z and that one of X or Y must be the optimum alternative.

Assume that X is optimal instead of Y (the proof of the other case is symmetric).
Since we are in the 1-Euclidean setting, we know that every agent in Y X \ Y* is to the
left of Y. Therefore, for all i € YX \ Y™, d(i,X) = d(:,Y) + d(X,Y). Using this fact,
as well ad the definition of a-decisiveness and the triangle inequality which states that
d(i,Y) <d(i, X) + d(X,Y), we can derive an improved upper bound on the social cost of
Y:

SC(Y) = d(i,Y)

1EN
=Y diY)+ > diY)+ Y d(i,Y)
iey'* €Y X\Y* 1€XY
<o) diX)+ Y (dEX)—dX,Y)+ D (d(i, X) +d(X,Y))
i€Y'* €Y X\Y* iEXY

We continue to derive a better bound on the social cost of Y from the above; the second
inequality below is due to Lemma 2.

SC(Y) <> d(i,X) = (L—a) Y d(i,X) + (|XY| - [YX \ Y*|) d(X,Y)
1EN 9%
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=SC(X)—(1—a) > d(i,X)+ (XY] - [YX\Y*)d(X,Y)
1EY'*

< SC(X) — - —a Z dX,Y)+ (| XY |- Y X \Y*|)d(X,Y)
IEY'*

1
= SC(X) + <\XY] X\ Y- _O‘|Y*y) d(X,Y)

— SC(X) + <n -2 vx

o *)d(X,Y).

We can also derive an improved lower bound for the social cost of X, the last inequality

below is again due to Lemma 2.

=Y di.X)+ Y dEX)+ > di,X)

9% €Y X\Y* 1eXY
> Z d(i, X) Z d(i, X)
i€y €Y X\Y*
=Y diX)+ Y (d(i,Y)+d(X,Y))
i€y IEY X\Y*
> Z d(i, X) Z d(X,Y)
i€y €Y X\Y*
> 17|Y*|d(X Y)+ Y X\ Y¥d(X,Y)

=1%a (IYX|+ oY X\YH)d(X,Y)

We can now bound the distortion using these two inequalities. We will demonstrate that
the distortion is maximized when there are no agents to the left of Y, i.e., [Y X\Y* =0=
|Y*| = |Y X|. As we have seen, the distortion is also maximized when Vi € | XY, d(i, X) = 0.

Thus, we will have effectively reduced the problem to the case where m = 2.

p(Y)SC(Y) 4+ p(X)SC(X)

SC(X)
p(Y) (SC(X) + (n = IV X| = 22V X\ Y[} d(X,Y) ) +p(X) SC(X)
8 SC(X)
p(Y) (n— Y X| - 22V X \ Y7]) d(X,Y)

- SCO(X)
L) (n— 2V X| = 22y X\ V7)) d(X,Y)
B i (VX[ +alY X\ Y*))d(X,Y)
p(Y) (14 a)n — 2]V X| — 20|V X \ Y))

VX[ +alY X\ Y7

-1+

If we hold |Y X| constant, we observe that the distortion is decreasing in |[Y X \ Y*|.

In

other words, the distortion is maximized when |YX| = |[Y*|. If we set Y X \Y*| =0 1in
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the above distortion bound, then the remainder of this proof proceeds identically as in the
proof of Theorem 6. |

3.3 Distortion in the (m — 1)-Simplex

In this section we consider a specialized, yet natural, setting inspired by the work of An-
shelevich et al. (2015), known as the (m —1)-simplex setting. In this setting, we assume that
the m alternatives are all at distance 1 from each other and for every agent i, for all Y € M,
we have that d(i,Y) < 1. This includes the case when m alternatives are the vertices of
the (m — 1)-simplex and all of the agents lie inside this simplex. Although this is a very
constrained setting, it is a reasonable assumption in the case when all of the alternatives
are uncorrelated, i.e., when all the alternatives are equally different from one another. For
example, when choosing where to allocate money, it may be that for a die-hard fan of alter-
native X, all other alternatives are equally bad. When choosing which of three services X,
Y, or Z to improve, someone who only uses service X will have equally large cost for both
alternative Y or Z, since they do not benefit from them. On the other hand, a person using
all three services equally may be indifferent between the alternatives. When the question
is, “Should we improve the highway system in New York, California, or Texas?”’ someone
who lives in New York would want their roads improved, not someone else’s, while someone
who often visits all three states may be more indifferent between the alternatives.

In this setting, the distortion of randomized dictatorship does not improve because the
worst case occurs on a line. However, we will see that plurality and the proportional to
squares algorithm are good for any number of alternatives in this setting.

Theorem 10 If the (m — 1)-simplex setting is a-decisive, then plurality has distortion at
most 1 + 2a.

Proof. Suppose X is the optimal alternative, and W is the alternative selected by plural-
ity. For convenience, define § = >, ;. d(i, X).

By Lemma 2, we know that SC(X) > 40 + H%ZY;AX,W Y*|d(X,Y), which equals
o+ H% (n —|X*| — |[W*|) since in the simplex setting distances between all alternatives
equal 1. Furthermore, since in the simplex setting all distances d(i, W) are at most one, we
have that SC(W) < n — |[W*| + 3", cpp- d(i, W) < n — |[W*| 4+ ad; the last inequality is due
to the definition of a-decisiveness.

Putting this together, we have that the distortion is at most

ad + (n— |W*))
0+ g (n— | X = [W|)

This bound is decreasing with § (since n — |[W*| > « - 14%0[ (n —|X*| — |[W*|)), and so

is maximized for § being as small as possible. By the triangle inequality, and the fact that
d(X,W) = 1 for simplex settings, we know that 1 < d(i, W)+d(i, X) for each i € W*. Since
d(i,W) < a-d(i, X) by definition of decisiveness, this means that 1 < (1 + «)d(i, X), and
thus 6 > IJ%OAW*\ Plugging this into the expression above, we obtain that the distortion
is at most

e W+ (n— W) 1+ a)n—|W*|

e W+ g (0 — X[ = [W)) n—|X*|
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(1+a)n — | X*|
- n— | X*|
a-n

=14+ ——.
ey

Since |X*| < |W*|, it follows that | X*| < §. Thus, 1 + %, which is increasing in | X*|,

is maximized when |X*| = 5. We conclude that the distortion is at most 1 + 2a. [

Plurality, although a deterministic algorithm, does very well in this setting, because for
a = 0 the alternative with the most votes is clearly optimal. In general, as a — 0, the agents
are forced closer to the vertices of the simplex, and plurality better approximates finding the
optimal alternative. However, when « is not small, plurality fares poorly compared to the
proportional to squares algorithm. Indeed, for o < %, plurality has a better upper bound on
distortion than proportional to squares, but otherwise the opposite is true. The difference
becomes more obvious for high a: for @« = 1 (i.e., for general metrics), proportional to

squares has distortion at most 2, while plurality has distortion at most 3.

Theorem 11 If the (m — 1)-simplex setting is a-decisive, the proportional to squares algo-
rithm has distortion at most % (1 +a+V2Va? + 1) .

Proof. Suppose X is the optimal alternative. For convenience, define dy = >,y d(i, X)
for any alternative Y # X. We begin by proceeding identically to the proof of Theorem 10.
Thus we obtain that, for all Y £ X, it holds that

SC(Y) < ady + (n—|Y*|)
SC(X) ™ by + 15 (n — | X*[ = [Y*])’

and furthermore that
SC(Y) (1+a)n— Y™

SC(X) n— | X*|
This is because until this point in the proof of Theorem 10, we do not use anywhere that
we are comparing X with the outcome chosen by plurality; this comparison holds for the
costs of arbitrary alternatives.
Now, let v = (n—|X*|) - > e |Z*|?. If p(Y) is the probability of alternative Y
being chosen by the proportional to squares algorithm, then the expected distortion of this
algorithm is equal to

ZYGM p(Y)SC(Y)
SC(X)

<

) YR (so)
P s sy (sem)
VP (e )

<p(X)+ X

Y#X Dzem |27

1+« « " " "
=p(X) + § T |Yy3+\Y|2§j|Z\
Y +«
Y#X Z4Y
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14+« * * *
= 7|X\ — XN+ > ﬁ|Y|g+’Y\QZ|Z’
v YZX Z2Y

1—|—Oé * *
= XX DY P
v Y£X YAX
a . . «
+> H|Y’3+’Y’2 > 1z
YAX ZAY.X

Let g =14 fﬁ:i%— If we want to obtain the desired bound of % (1 +a+vV2Va? + 1),

we must show that

LD DI GRIEID SEISTEE Sl S SR S S

1+a Y#£X Y#X Y£X Z4Y,X

( —{-a—%—\[\/oﬂi)

1

2

1 * *|2

5 (n—|X™) Z\Z|
zeM

1+«

= (I e S (e Y 12

Y#X Y#X Z#Y,X

We can further simplify this inequality by canceling terms on both sides. We note that
lﬁ >12> 7 # > 15y First, we consider an alternative Y # X. On the LHS, [Y*|3 terms
have a coefﬁaent of Tia + , while on the RHS, they have a coefficient of % 8. We subtract
Tra |Y*|? from both sides. Slmllarly, for [Y*23°, 2y x |Z*| terms, we have a coefficient of 1
on the LHS and a coefficient of 23 on the RHS. We subtract |Y*|? > zzv.x |Z*| from both
sides. We repeat this process for allY # X.

Next we consider terms that contain | X*|. We observe that neither side has | X™*|° terms.
The term |X*|? >vzx |Y"| has a coefficient of 7 on the LHS, while it has a coefficient
of 3 on the RHS. Thus, we subtract 1JFO[\X*|2 ZY;AX |Y*| from both sides. Finally, we
consider the term [X*| >y y |Y*|2. The LHS has this term with a coefficient of 1, while
the RHS does not have this term at all. We note that this is the only term remaining on
the LHS after cancellation.

After all of this canceling, this leaves us with needing to prove that

XY sy 5 (5O ) e (50 ) WP

Y#£X Y#£X
+B-2) Y Y |27
Z#X,Y

’ 3
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In fact, we will prove that

« « 1 2a
ey (2

Y#X Y#X

2
Y*S _ Y*X*Q
P (5o 22 wexer).

which will imply the above inequality, since 3y, (8 —2) Y2y zzxy |Z7| is always
non-negative.
We observe that

2 2
> (8- 22 ) wep+ (8- 125 ) wellxcp -2y epixc)

Y£X

— * _ 2a *|2 _L *|2 * *
=S (5 2 ) wp e (5 2 )R -2,

Y#X

which we claim is non-negative. Proving that this quantity is non-negative completes our

proof. First, we claim that it follows from simple algebra that the product of (5 — 14%04)

and (ﬂ — 1%%@) is 1. Thus, for any Y # X, we can show that

2 2
*2 _ *2_2 * *
(/3— )!Y\+<6 T a>’X Yl

1+«
2 2 ?
o
— [ v*|\/8 - — | X"\ /8 -
Y7ly/8 I1+a | |51+a>
> 0,
which implies that the summation over these terms is non-negative as well. [ |

Unlike all of the previous distortion bounds we have provided, this is the first that is
not linearly increasing in «. It increases slower than the distortion of plurality, which is
1 4 2a. For smaller values of «, such as a = 0, which is where plurality has the largest
advantage over proportional to squares, the distortion of proportional to squares is still
at most 1+—2‘/§ ~ 1.2071, which is reasonably small. For 1 > « > .5, the values of 1 4+ «

and % (1 +a+vV2Va? + 1) are relatively close. Since we have 1 + « as a lower bound for

all randomized algorithms, this implies that proportional to squares is nearly optimal for
sufficiently large values of a. We suspect that the optimal algorithm in the (m — 1)-simplex
setting is in fact a modified version of a-generalized proportional to squares that works for
arbitrary m, and we think it should have a distortion upper bound of 1 + a.

4. Median Agent Cost

In this section we study the distortion with the quality of a candidate being measured by
the median agent cost, instead of the sum of costs as in the previous section.

818



RANDOMIZED SOCIAL CHOICE FUNCTIONS UNDER METRIC PREFERENCES

4.1 General Metric Spaces

In this section, we will examine the median objective function. In the work of Anshelevich
et al. (2015), it was shown than no deterministic algorithm can achieve a worst-case distor-
tion of better than 5, and that the Copeland algorithm achieves this bound. We begin this
section by showing that randomized algorithms have a general worst-case distortion lower
bound of 3 rather than 5 like deterministic algorithms.

Theorem 12 For m > 2, the worst-case median distortion is at least 3 for all randomized
algorithms.

Proof. We must show that there exists a preference profile such that for all randomized
algorithms, there always exists a metric space that induces the preference profile and the
distortion is at least 3. We will consider a preference profile with two alternatives W, X and
n agents. In this profile, there are n — 1 agents that prefer W over X, while the remaining
agent prefers X over W. We claim that no randomized algorithm can achieve distortion
< 3 for all metric spaces that induce this profile.

First, we claim that there exist metric spaces where the distortion is unbounded if X is
picked with any positive probability. For example, suppose for all agents that prefer W over
X, d(i,W) =0,d(i, X) = 1. The agent that prefers X over W has d(i, W) = 1,d(i, X) = 0.
Thus, med(W) = 0 and med(X) = 1. Thus, we conclude that any randomized algorithm
with p(X) > 0 for the given preference profile has unbounded worst-case distortion.

In order to complete our proof, we only need to consider randomized algorithms that
select W with probability 1, given the aforementioned preference profile. We will show
that there exists a metric space in which the distortion is at least 3 for these algorithms.
Consider the following metric space: there are § agents with d(i, W) = % —eand d(i, X) =
3 + e One agent has d(i,W) = 3,d(i,X) = 3. The remaining agents who prefer W
have d(i, W) > 2,d(i,X) > 2. Then med(X) = 5 + ¢ and med(W) = 2. Since med(W)
approaches 3 - med(X) as € — 0, and p(W) = 1, the distortion approaches 3. [ |

From this example, we are able to conclude that both randomized dictatorship and
proportional to squares have unbounded distortion, even for m = 2.

We now present the main result of this section: designing a randomized algorithm
which will always achieve a distortion of at most 4 for the median objective. We claim that
to design a randomized algorithm for the median objective, it makes sense to consider the
uncovered set, which is the set of alternatives X that pairwise defeats every other alternative
Y either directly (i.e. X pairwise defeats V') or indirectly through another alternative Z (i.e.
X does not pairwise defeat Y, but X pairwise defeats Z, which in turn pairwise defeats Y).
From the work of Anshelevich et al. (2015), we have the following two lemmas concerning
the quality of alternatives in the uncovered set.

Lemma 13 (Anshelevich et al., 2015) If an alternative W pairwise defeats (or pairwise
ties) the alternative X, then med(W) < 3-med(X) for all metric preferences.

Lemma 14 (Anshelevich et al., 2015) If an alternative W is in the uncovered set, then
med(W) < 5-med(X) for all metric preferences, where X is any alternative.
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D=

One agent

5 — 1 agents

n

Figure 4: There are 5 agents between W and X that prefer W, one agent to the right of
X that prefers X, and § — 1 agents who are far from both alternatives but prefer W. If a
social choice function selects W with probability 1, then the worst-case median distortion
is at least 3.

These two lemmas suggest that if we want to achieve distortion better than 5, we
should not deterministically pick a single alternative from the uncovered set because we
do not know of a way to ensure we do not pick an alternative that is a factor of 5 away.
Indeed, this is what can happen with Copeland. Instead, we want to mix over the entire
uncovered set and ensure that some alternatives that pairwise defeat the optimal alternative
(i.e., alternatives only a factor of 3 away) are chosen with high probability to decrease the
distortion. However, since we do not know the optimal alternative, we must have this
property hold for every alternative. This is made precise in the following theorem. Let
G = (M, E) be the majority graph, i.e., a graph in which the alternatives are vertices and
the edges denote pairwise victories: an edge (Y,Z) € E if Y is preferred to Z by a strict
majority of the agents. Let S be the uncovered set, and p be some probability distribution
over S. Finally, define 7(Y") for any alternative Y to be the total probability distribution
“covered” by Y, i.e., m(Y) = E(Kz)eEp(Z). Then, we have the following statement.

Theorem 15 If an algorithm selects alternatives only from the uncovered set S with prob-
ability distribution p, and if for all alternatives X we have that w(X) < %, then the expected
median distortion of this algorithm is at most 4.

Proof. Let G = (M, E) be the majority graph in which ties are broken arbitrarily, and
let X be the optimal alternative. By Lemmas 13 and 14, we know the expected distortion
is at most

LpX)+ Y. 3p2Z)+ . 5-p(2)

zZeS:(Z,X)eEE zeS:(X,Z)eE

Since m(X) < 3, this means that > zesix,2)eeP(Z) < %. Since the distortion can be

at worst 5 with probability % and otherwise has distortion at most 3, we conclude that the
distortion of this algorithm is at most 4. ]
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Thus, we want an algorithm that manages to ensure that for every alternative X, the
alternatives that can be more than a factor of 3 away from X (i.e., the ones it pairwise
defeats) are selected with probability at most % The algorithm we describe, Uncovered Set
Min-Cover, uses a linear program to accomplish this. We define the subset of the edges on
the uncovered set as E(S) ={E = (Y,Z) :Y € 5,Z € S}. We also give the LP (and its
dual which is not used by the algorithm, but is necessary for our proofs), which is used as
a subroutine by our algorithm.

(Linear Program) (Dual)
minimize Pmax maximize byin
subject to py >0, Y €S subject to by >0, Y €S
Z bz < Pmax, YeS Z bZ > bmina YeS
(V,Z)eE(S) (Z,Y)eE(S)
Y pz=1 D bz=1.
zesS zZesS

Algorithm 2 Uncovered Set Min-Cover

Input: A preference profile o

Output: A probability distribution p over the alternatives of the uncovered set
G = (M, E) <+ majority graph of o
S « uncovered set of G
p < solution to LP (see above)

Now we must show that this algorithm actually has low distortion, i.e., the following
theorem.

Theorem 16 The expected median distortion of Uncovered Set Min-Cover is at most 4.

This theorem is immediate from Theorem 15 if we can show that for the distribution
formed by Uncovered Set Min-Cover, we have that 7(X) < % for all X. We prove this fact
using the following two lemmas.

Lemma 17 Let G = (M, E) be the majority graph in which ties are broken arbitrarily. For
the dual of LP, it must be that by, < %

Proof. Suppose, by way of contradiction, that for all Y € S, Z(Z,Y)EE(S) by > %, which
implies that >y 7)cp(s) bz < 3. Then we can derive that

%<Zby Z by

YesS (Z,Y)eE(S)

D S

YeS (Z)Y)eE(S)
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= Z byby

(Z,Y)EE(S)
Y Y w
YeS (Y,Z)eE(S)
1
57
which is a contradiction. [ |

<

Due to LP-Duality, the above lemma immediately implies that ppax < %, and thus
m(X) < % for all X € S. This does not complete the proof of Theorem 16, however, since
it is possible that the optimal alternative X is outside of the uncovered set S. To finish the

proof of the theorem, we also need the following lemma.

Lemma 18 Suppose we have a probability distribution p over alternatives in the uncovered
set S, and for allY € S, we have that n7(Y) = 3y 7 cpp(Z) < . Then, this also must

hold for alternatives outside of S, i.e., for all X ¢ S, we also have that w(X) < %

Proof. Consider an alternative X ¢ S, and let U be the set of alternatives “covered” by
X in S, i.e., that X pairwise defeats. Suppose to the contrary that 7(X) > %, i.e., that
Y zeupP(Z) > % Since X is not in the uncovered set, there must be some alternative W;
which pairwise defeats X and all the alternatives in U as well (if such W) did not exist
then X would defeat everyone either directly or in two hops, and thus would be in S). If
Wy € S, then #(W7) > % since it defeats all of U, leading us to a contradiction since all
alternatives in S cover less than half of the total probability mass. If, on the other hand,
W1 € S, then by the same argument there must be some alternative W5 which defeats all
of U, X, and W;. We continue in this way until we obtain some alternative W} which must

be in S, giving us the desired contradiction. |

This completes the proof of Theorem 16: by Lemma 17 we have that w(X) < % for all
X € S5, by Lemma 18 we have that this is true even for X ¢ S, and by Theorem 15 we
obtain the desired distortion bound.

4.1.1 EGALITARIAN OBJECTIVE

In addition to the median objective, we can also consider the egalitarian objective. In
this objective, instead of minimizing the median distance, the goal is to minimize the
mazimum distance, i.e., to make sure that everyone is within a small distance from the
selected alternative. For this objective, it is easy to see that selecting any alternative which
is someone’s top choice immediately results in a worst-case distortion of 3. On the other
hand, no randomized mechanism can have worst-case distortion better than 3. To see
this, simply consider preferences for n agents and n alternatives which form a Condorcet
cycle. No deterministic mechanism can have distortion better than 3 here, and the only
randomized mechanism to consider (without loss of generality) is the one which chooses an
alternative uniformly at random. In a metric space in which n — 1 agents have distance 1
to all alternatives, however, and the remaining agent has distance 1 to some alternative X
and distance 3 to the rest, we have that the distortion of this algorithm approaches 3 as
n — 0.
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4.2 Median Distortion for 1-Euclidean and Simplex Metrics

We complete this section by considering special metric spaces. In the case of 1-Euclidean,
we are trivially able to obtain the optimal algorithm: selecting the Condorcet winner, since
such a winner is guaranteed to exist for the 1-Euclidean setting. By Lemma 13, we know that
the Condorcet winner is guaranteed to be within a factor of 3 of the optimal alternative.
Note that the example in Figure 4 is 1-Euclidian, and thus this algorithm achieves the
optimum worst-case distortion.

In the (m — 1)-simplex setting, we will see that almost any alternative is of high median
quality. This is due to the fact that the alternatives are very spread out. Unless an
alternative has at least 5 agents very close to it, its median cost is guaranteed to be at least
% in general metric spaces. The following result shows than any algorithm which selects an
alternative preferred by more than % agents as their top choice (if one exists) will have low
median distortion. Thus, for example, plurality is a good algorithm for this setting.

Theorem 19 If the (m — 1)-simplex setting is a-decisive, any algorithm that satisfies the
majority criterion has median distortion at most 1 + a.

Proof. We begin by noting the following useful fact: for any alternative Y with [Y*| < g,
it must be that med(Y’) > 14%1 Note that for the case when n is even, med(Y’) refers to the
distance of the (5 4-1)-th furthest agent from Y. This fact is true because at most § agents
have Y as their first preference, and the remaining agents have d(i,Y) > 14%04 by Lemma 2
and the fact that the distances between all alternatives equal 1 due to the simplex setting.
If there is no strict majority winner (i.e., all alternatives have at most 4 agents choosing
them as their top preference), then the above fact immediately implies the desired bound on
median distortion. This is because any alternative W has med (W) < 1, since for all i € N,
we have that d(i, W) < 1 due to this being the simplex setting. Therefore, the distortion is
always at most 1 + «, since the median cost of any alternative lies between H% and 1.
Now we consider the case when there is a strict majority winner W, i.e., an alternative
such that [W*| > §. Let X be the optimum alternative (i.e., the one minimizing med(X)).
If X = W, then the distortion is 1, so assume that X # W. Then, for every i € W*, we
know that d(i, W) < « - d(i, X) (since the distances are a-decisive), and that d(i, X) < 1
(since this is the (m — 1)-simplex setting). Therefore, it must be that med(W) < a.. Due to
the useful fact proven above, we know that med(X) > 1_%&, and the distortion is at most

a(l+a) <1+ a, as desired. [

5. Conclusion

We analyzed the distortion of randomized social choice algorithms in a setting where agent
costs form a metric space. In cases where randomized algorithms are appropriate, such as
when the choice will be repeated many times, or when the probability p(Y’) can be thought
of as the amount of power that candidate Y gets, with the total amount of power summing
to 1, then a very small amount of information is necessary to form algorithms with very
small distortion. The randomized algorithms we consider, such as randomized dictatorship
and proportional to squares, require only the first preference of each agent (and do not
require the agent costs to be known) to achieve distortion better than any known deter-
ministic algorithm, despite the fact that the best deterministic algorithms require the full
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preference profile. Thus, randomized algorithms can perform better with less information.
We also considered special cases of metrics, such as when agents have a strong preference
towards their first choice over the second, when agent preferences are 1-FKuclidean, and
when all alternatives are completely dissimilar, and we were able to achieve better distor-
tion bounds using randomized algorithms. This was true even for the more “egalitarian”
median objective, in which we were able to provide a probability distribution based on the
majority graph with distortion better than any deterministic algorithm.

Some open questions still remain. While we were able to show that proportional to
squares is an optimal algorithm for m = 2 alternatives in the sum setting, our best known
algorithm for arbitrary m is randomized dictatorship, which has a distortion arbitrarily
close to 3 in the worst case. We suspect there may exist a generalization of proportional to
squares that is able to achieve a distortion of 2, but it is likely significantly more complex
and may require the full preference profile instead of agents’ top preferences.

More generally, this paper studies how well algorithms which only have access to limited
ordinal information, instead of the ground truth, can compete with truly omniscient algo-
rithms. These questions are larger than just social choice, and apply to other settings as
well, for example matchings, as described in the Introduction. At least for metric settings, it
seems that knowing only ordinal information is often enough; there is no need to elicit com-
plex numerical information. Looking at other utility structures in addition to metric spaces
would also make sense, such as specific metric spaces which model particular applications
(e.g., doubling metrics), or algorithms which know limited numerical information (e.g., the
order of magnitude of the agent utilities), but must compete with omniscient algorithms.
Finally, it would be interesting to analyze the normative properties of algorithms with small
distortion: it may be possible to characterize the entire space of algorithms which have, e.g.,
distortion at most 3 and obey certain desirable axiomatic properties.
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