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Abstract

The ability of discarding or hiding irrelevant informatitvas been recognized as an important
feature for knowledge based systems, including answerrsgrgmming. The notion of strong
equivalence in answer set programming plays an importa@tfoo different problems as it gives
rise to a substitution principle and amounts to knowledgevedence of logic programs. In this
paper, we uniformly propose a semantic knowledge forggttialledHT- andFLP-forgetting for
logic programs under stable model ard~-stable model semantics, respectively. Our proposed
knowledge forgetting discards exactly the knowledge ofgad@rogram which is relevant to for-
gotten variables. Thus it preserves strong equivalencledrsénse that strongly equivalent logic
programs will remain strongly equivalent after forgettihg same variables. We show that this
semantic forgetting result is always expressible; and weea representation theorem stating that
the HT- andFLP-forgetting can be precisely characterized by Zhang-Zhéar forgetting postu-
lates under theiT- andFLP-model semantics, respectively. We also reveal underlgammections
between the proposed forgetting and the forgetting of psitipmal logic, and provide complexity
results for decision problems in relation to the forgettiAg application of the proposed forgetting
is also considered in a conflict solving scenario.

1. Introduction

Motivated by Lin and Reiter's seminal work (Lin & Reiter, 19the notion of forgetting in propo-
sitional and first-order logics — distilling from a knowlezl@pase only the part that is relevant to
a subset of the alphabet — has attracted extensive inténefits KR community, (e.g., see Lang
& Marquis, 2010; Zhou & Zhang, 2011). In recent years, redeens have developed forgetting
notions and theories in other non-classical logic systamms fvarious perspectives, such as for-
getting in description logics (Kontchakov, Wolter, & Zakiaschev, 2008; Wang, Wang, Topor, &
Pan, 2010; Lutz & Wolter, 2011; Packer, Gibbins, & Jennirf¥l 1), forgetting in logic programs
(Zhang & Foo, 2006; Eiter & Wang, 2008; Wong, 2009; Wang, Waahghang, 2013), and forget-
ting in modal logic (Zhang & Zhou, 2009; Su, Sattar, Lv, & Zga009; van Ditmarsch, Herzig,
Lang, & Marquis, 2009; Liu & Wen, 2011). As a logical notiomrdetting has also been studied
under some different terms such as variable eliminatiomdl_&.iberatore, & Marquis, 2003), ir-
relevance, independence, irredundancy, novelty, or abpigy (Bobrow, Subramanian, Greiner, &
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Pearl, 1997). It has been shown that in the study of modeliyegts’ behaviors, forgetting plays an
important role in conflict resolution (Zhang & Foo, 2006; lga& Marquis, 2010).

In propositional logic, the result of forgetting an atprfftom a formulap, writtenForget (¢, {p}),
is the formulap[p/ L] V ¢[p/T], wherep[p/ L] andp[p/T] is the formula obtained frorp by re-
placing each occurrence of atgmvith _L (false) andT (true) respectively. Forgetting a set of atoms
from a formulay is defined asorget(p, V U {p}) = Forget(Forget(y, {p}), V) (Lin, 2001). Itis
easy to see that the forgetting preserves logical equigalenhat is, logically equivalent formulas
(theories) will remain logically equivalent after forgaty the same atoms. It is well known that, if
1) does not mention any atoms frovhthen

o E ¢ iff Forget(p,V) E 4.

In this sense the forgetting in propositional logic, calfgdpositional forgettingis a knowledge
forgetting sinceForget(p, V') exactly contains the “logical content” gfthat is irrelevant td’.

For logic programs under stable model/answer set semd@ettond & Lifschitz, 1988), the is-
sue of logical equivalence is rather complicated due tdfitisrént notions of “equivalence”: (weak)
equivalence and strong equivalence. Two logic progrAmandIl, are(weakly) equivalenif and
only if II; andIl, have the same stable moddls; andIl, arestrongly equivalentf and only if
1I; U IT andIl, U IT are equivalent for every logic prograh It is well known that strong equiva-
lence is an important concept in answer set programming JA®Rause it amounts tmowledge
equivalencavhich captures thigical conteniof a logic program (Osorio & Zacarias, 2004; Osorio
& Cuevas, 2007; Delgrande, Schaub, Tompits, & Woltran, 2048d can be used for simplifying
logic programs where two strongly equivalent rules may hberamangeable without affecting the
original logic programs’ stable models (Pearce, Tompit3)V&8ltran, 2001; Ferraris, Lee, & Lifs-
chitz, 2011; Lin & Chen, 2007; Lin & Zhou, 2011). The strongua@lence can be characterized
in the logic here-and-theredt), viz, two logic programs are strongly equivalent if andyoifithey
have the samaT-models (Lifschitz, Pearce, & Valverde, 2001). For insw@recrule of the follow-
ing form “p < p A " has the sameiT-models as that of (tautology), where> can be an arbitrary
formula. Thus it can be safely removed from every logic paogs without changing their stable
models.

Besides the stable model/answer set semantics of logicgrmy(Gelfond & Lifschitz, 1988),
FLP-stable model semantics also steadily gains its importgRreber, Pfeifer, & Leone, 2011;
Truszczynski, 2010). The notion of strong equivalencenslarly generalized to logic programs
underfFLP-stable models semantics: two theoriésandlIl, arestronglyFLpP-equivalentif and only
if IT; U IT andIl; U IT have the sameLP-stable models for every logic progralh It is shown that
this strong equivalence can be characterized in ternrm.®imodels, viz, two logic programs are
stronglyFLP-equivalent if and only if they have the samer-models (Truszczynski, 2010).

When we develop the notion of forgetting in logic program&serving strong equivalence is
important, like that the propositional forgetting pressequivalence of propositional logic. Con-
sider that two agents need to achieve an agreement for énogo, where each agent’s knowledge
base is represented by a logic program. Suppose that trete@rconsistertlogic programs, but
their combination is inconsistent. To achieve a consistentbination, one may forget some atoms
from each of the logic programs, so that the combination eirtforgetting results is consistent.
Then forgetting may be effectively used to solve the conBietween the two agents’ knowledge

1. Alogic program isonsistentf it has some stable models.

32



KNOWLEDGE FORGETTING INANSWER SET PROGRAMMING

bases (Zhang & Foo, 2006; Eiter & Wang, 2008; Lang & Marquil®. For the purpose of sim-
plicity, on the other hand, agents may also replace theiwlaage bases with strongly equivalent
but syntactically simpler ones.

Let us consider a simple Yale Shooting scenario where the [mggramll consisting of the
following rules?

shoot < not aux; auz < not shoot; <+ auzx, shoot.

Hereaux is used to generate possible occurrences of astiont. One can be interested in which
logic program represents the same knowledge as tHatwafien the auxiliary atomuzx is ignored.
This intuitively results in a logic prografi’ consisting of the rufé

shoot < not not shoot,

which captures exactly the knowledge Idfthat is irrelevant tazuxz. We will see thafll’ can be
obtained fromll by HT-forgetting aux (cf. Example 5 with other atom names), while it cannot be
obtained in terms of previous forgetting approaches irclpgpgramming (cf. Example 11).

It turns out that preserving strong equivalence in forggtiis challenging. There have been
several attempts to define the notion of forgetting in logiogoams, but none of these approaches
is fully satisfactory. Zhang and Foo (2006) first defined ayrdgriented weak and strong forgetting
notions for normal logic programs. But these forgettingart preserve neither (weak) equivalence
nor strong equivalence. Eiter and Wang (2008) then propassmantic forgetting for consistent
disjunctive logic programs, which preserves equivalengenbt strong equivalence. They specif-
ically indicated the importance of preserving strong ealgimce in logic programming forgetting
and raised this issue as a future work. Wong (2009) propagedargetting operators for disjunc-
tive logic programs. Although the two operators indeed gmess strong equivalence, it may lose the
intuition of weakening under various circumstances (sexi@e5 for details). A recently proposed
forgetting for logic programs may introduce extra knowledgf., see Wang et al., 2013, Ex. 2).
Thus itis not a knowledge forgetting.

Together with preserving strong equivalence, expressia&ris another desired criterion for
logic programming forgetting. ldeally we would expect thiad¢ result of forgetting some atoms
from a logic program is still expressible by a logic prograrhis is particularly necessary when we
view agents’ knowledge bases as logic programs and fangeiemployed as a means of conflict
solving among these agents’ knowledge bases (Zhang & F06) 2While previous logic program-
ming forgetting approaches all meet this criterion, as wik seie in this paper, once we consider
forgetting in arbitrary logic programs, retaining expibgiy is challenging objective to achieve for
a semantic forgetting notion.

Finally, we believe that as a way of weakening, knowledggdtiing in logic programs should
obey some common intuitions shared by forgetting in clasdimgics. For instance, forgetting
something from a logic program should lead to a weaker progracertain sense. On the other
hand, such weakening should only be associated to the ntliewarmation that has been forgotten.
For this purpose, Zhang and Zhou (2009) proposed four fiingepostulates to formalize these
common intuitions and showed that forgetting in proposiiologic and modal logic S5 can be
precisely captured by these postulates. Surprisinglyeradrprevious forgetting notions in logic

2. This is due to one of the anonymous reviewers.
3. The rule is strongly equivalent to the choice rudg $hoot }1” but it is not a normal rule.
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programs actually satisfies Zhang-Zhou's postulates.isrsétnse these previous forgetting notions
for logic programs are not knowledge forgetting operators.

In summary, we consider the following criteria that a knadge forgetting notion in logic pro-
grams should meet:

e Expressibility. The result of forgetting in an arbitraryglo program should also be express-

ible via a logic program;

e Preserving strong equivalence. Two strongly equivalegitlprograms should remain strongly

equivalent after forgetting the same variables;

Satisfying common intuitions of forgetting. Preferablgrdetting in logic programs should
be semantically characterized by Zhang-Zhou’s four faiggtpostulates.

In this paper we present a comprehensive study on knowlaxgetfing in the context of arbi-
trary logic programs (propositional theories) under sabbdel and-LP-stable models semantics,
calledHT- andFLP-forgetting respectively. We show that ther- andrLpP-forgetting meet all above
criteria, and hence have primary advantages when companaektious logic program forgetting
notions.

The main contributions of the paper may be summarized asifellwherex € {HT, FLP},

As a starting point, we investigate the model theoreti¢eracterization for strong equiva-
lence of logic programs under stable model anetstable model semantics, and explore their
strong equivalence by the equivalence in propositionatlog

We propose a semantieforgetting for logic programs undes-stable model semantics re-
spectively. HereHT-stable model means stable model. TBhforgetting result is always
expressible via a logic program and it preserves strongvalpuice under stable model and
FLP-stable model semantics.

We investigate semantic properties of théorgetting, and show that theforgetting satisfies
Zhang-Zhou’s four postulates under tkanodel respectively. In particular, the forgetting
result consists of the logical content that is irrelevarforgotten atoms.

We establish the underlying connections betwedargetting and propositional forgetting,
based on which we provide complexity results for some daeigroblems in relation te-
forgetting. In particular, we show that resulting checkingeciding if a logic program is a
result ofx-forgetting a set of atoms from a logic program +i§-complete, while the related
inference problem in terms efforgetting varies from co-NP-complete I, -complete.

The theoretical negative results confirm that it is not a g¢ask to simplify logic programs
by forgetting. But fortunately, this kind of simplificatiazan be computed offline in general.
For instance, a problem domain description involves a laiusdliary propositional variables.
One can firstly simplify the description by forgetting (paf) the auxiliary propositional
variables, like a kind of compilation (Lang et al., 2003).

Finally we consider an application of knowledge forgegtin the solving of conflicts in the
context of logic programming.
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The rest of the paper is organized as follows. Section 2 pniefliews necessary concepts and
notions of answer set programming. Section 3 presents #dmacierizations for strong equivalence
of logic programs. We firstly present a uniform definition bétknowledge forgetting for logic
programs in section 4, and then explore their expressibitirgetting postulates, relationship with
propositional forgetting, computational complexity amdapplication of knowledge forgetting in
conflict solving. Section 5 discusses other forgetting apgnes in logic programs, and finally,
Section 6 concludes the paper with some remarks. All thefgrimothe paper are deferred to
Appendix for clarity.

This paper is the revised and extended version of a papehwalpigeared in Proceedings of KR
2012 (Wang, Zhang, Zhou, & Zhang, 2012).

2. Answer Set Programming

In this section we briefly recall the basic notions of logiogmamming under stable model seman-
tics, including its syntax, reduction, stable model (Feést2005) andarLP-stable models (Truszczyn-
ski, 2010) and strong equivalence (Lifschitz et al., 20Q4sZczynski, 2010). In the paper a “stable
model” is called amT-stable model for convenience, and we assuae{HT, FLP}.

We assume a propositional languafig over the finite setd of propositional atoms, which is
called thesignatureof the language’ 4.

2.1 Syntax

The formulasof £ 4 are built from the signatufe4 and the O-place connective (“false’) using
the binary connectives, v and> as follows:

pu=L|pleVelpAe|lpDe (1)

wherep € A. T (“true’) is the shorthand of. O L, ~¢ for p D L, andy <> ¢ for (¢ D @) A (¢ D
). A theoryis a set of formulas.

An interpretationis a set/ of atoms from4, where each atom o4 is viewed to be true if itis in
I, and false otherwise. In propositional logic, the notiohsnodelandsatisfactionrelation = are
defined as usual. In the following we denote, X by X for X C A, Mod(y) for {M|M = ¢},
¢ = 1 for Mod(p) = Mod(%) (i.e. ¢ is equivalentto 1)) and M for {I C A|l ¢ M} where
M C 24, Aformulay is irrelevant toa setV of atoms, writterlR(p, V'), if there exists a formula
1 mentioning no atoms frorlr such thatp = .

For convenience, we also define the following notations. $die a finite set of formulas.
We denote\/ S (resp. A S) the disjunction (resp. conjunction) of all formulas $h where\/ 0
denotesl and A () denotesT, and|S| the cardinality ofS. Similarly by -5 (resp.——S) we mean

{=¢|¢ € S} (resp.{-—¢ | ¢ € 5}).

2.2 Reduct and Stable Models

Let ¢ be a formula andi’ C A. Thex-reductof ¢ w.r.t. X, writtenRed, (¢, X), is recursively and
uniformly defined as follows:

4. In the rest of this paper, whenever there is no confusi@may not explicitly mention the signature when we talk
about formulas of 4.
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(*-R1) Red. (L, X) = 1;
(*-R2) Red,(p, X) = pif X | p, and_L otherwise;

(x-R3) Red, (1 0 p2, X) = Red, (1, X) o Red, (2, X) if X = ¢1 0 ¢y whereo € {A,V}, and
1 otherwise;

(HT-R4) Redyr(p1 D w2, X) = Redyr(p1, X) D Redur(p2, X) if X = 1 D o, and_L otherwise;
01 D Redrip(p2, X), it X =1 Ao,

(FLP-R4) Redeip(pp1 D 2, X) =4 T, it X /= p1;
1, otherwise (i.e X [~ p1 D ¢2).

Definition 1 A setX C Ais ax-stable modebdf a formulay if X is a minimal (under set inclusion)
model ofRed, (¢, X'). We denote the set efstable models ap by sM, ().

Please note that, traditionally, the-reduct is named “reductRedyr (¢, X) is written as (X
HT-stable model is called “stable model” (Ferraris, 2005)] &ad p(0, X) is written as (X"
(Truszczynski, 2010).

It is known that,HT-stable models andLp-stable models are not comparable in the sense that
someHT-stable models are neLp-stable models, and sonmepP-stable models are netT-stable
models (cf., see Truszczynski, 2010, Exs. 1, 2, 4 and 5).

Example 1 Let us consider the following formulas:
e Lety =pV —p D p. We have that
Redur(¢,0) = L, Redur(p, {p}) = T,Redrip(p,0) = L, Redur(p, {p}) = p.
Thussmyr(¢) = 0, while sMep(¢) = {{p}}.
e Letyp; =pV -pandyp, = ——p O p. We have the following:

Redyr (¢4, 0) = T andRedyr(pi, {p}) = p,fori =1, 2,
Rede p(01, @) = T,Redgp(¢1, {p}) = p, Redep(p2, @) = T,Redg p(p2, {p}) =T.

Thus, whilesMe p(01) = SMur(p1) = {0, {p}}, SMep(2) = {0}.

Definition 2 Two formulasp; and s are x-sMm-equivalent (undex-stable model semantigsjrit-
tenp; =M 9, iff they have the samestable models.

%

Here the notion oHT-sM-equivalence is indeed the notion of equivalence in logmgpams
under stable model semantics (cf., see Lifschitz et al.1206m. 1).
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2.3 Strong Equivalence and Knowledge of Logic Programs

Unlike the equivalence in propositional logic, the equivale of logic programs does not allow
equivalent replacement i.ex, A 1 andp A o may have different stable models, even thoygh
and, are equivalent.

Example 2 Leto; = p D gandyps = p D p. AsSM(p1) = SMe(p2) = {0}, 1 andp, are
*SM-equivalent; howevem A p; has ax-stable modekp, ¢} while the uniquex-stable model of
p A g is {p}. Thus it does not allow replacing; by ¢, in p A ¢1. It also indicates thap, has
different “knowledge” fromy, under thex-stable model semantics.

This motivates the notion of strong equivalence.

Definition 3 Two formulasy; and 9 are strongly x-equivalent (undex-stable model semantics)
iff © A1 =M p A o for every formulap. In the casep; and 9 are stronglyx-equivalent, they
are x-knowledge equivalent

It is known that the notion of strong-equivalence can be captured in terms-ohodels, where
a x-interpretation is a paifX,Y) such thatX C Y C A. The x-satisfiability (thus x-model$,
denoted by=,, is recursively defined as follows:

(*+S1) (X,Y) #. L;

(X,Y)
(x-S2) (X,Y) . pifp e X;
(*S3) (X,Y) Fx p1 Vo if (X)Y) |y p10r(X,Y) =y po;
(*-S4) (X,)Y) Fx p1 Ao if (X)Y) =y 1 and(X,Y) =y 25
(HT-S5) (X,Y) |=nr 01 D o2 if Y = @1 D @o; and(X,Y) =y 1 implies (X, Y) Eur @o;
(FLP-S5) (X, Y) Erp 1 D 2 if Y E 1 D o, andY = o1 or X = 1 or (X, Y) e 2.

By Mod, () we denote the set of al-models of formulay. Please note here that,can be
eitherHT or FLP. In particular,Modyr(¢) (resp.Modg () denotes the set of aliT-models (resp.
FLP-models) ofp. For the formulasp; andy, in Example 2, one can check that none(@f{p}),
{p}, {p}) or {p},{p,q}) is ax-model of o1, while everyx-interpretation is a-model of .

Definition 4 Aformulay is alogical x-consequencef a formulap, writteny =, 1, iff Mod, (¢) C
Mod, (¢); two formulasy and ) are x-equivalent (undex-model semantics)written ¢ =, 1, iff
Mod, () = Mod, ().

In the following proposition, item (i) is proved by LifschkitTang, and Turner (cf., see Lifschitz
et al., 1999, (iii) of Prop. 6).

Proposition 1 Let A, B, C, D be set of atoms. We have the following
(i) A(Au-B) D> V(DU-C)=4ys N(AU-BU—--C) D\ D.
(i) AN(Au-B) D> \V(DU-C) Epp N(AU-BU-=C) D \/ D.
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Please note here that the inverse of (ii) does not generall ror instance;—p D p =gp T
while (0, {p}) Frpp V —p.

Given two formulasp; and ., it is known thaty, and ¢, are stronglyHT-equivalent under
HT-stable model semantics if and only if they are-equivalent, viz.p1 =41 2; ©1 andp, are
strongly FLP-equivalent undeFLp-stable model semantics if and only if they amer-equivalent,
Viz. 1 =rp 2 (cf., see Truszczynski, 2010, Thm. 7). It is commonly recoegh that strong
equivalence amounts tamowledge equivalenasf formulas. That is, strong-equivalence captures
the logical content of a formula understable model semantics (Osorio & Zacarias, 2004; Osorio
& Cuevas, 2007; Delgrande et al., 2013). Now we formally defire knowledge of logic programs.

Definition 5 The x-knowledgeof a formulay under x-stable model semantics, writt&rn, (),
consists of the logical-consequence @f, viz,Cn,(p) = {¢ | ¢ Ex ¥}

The x-knowledge of a formula stands for thelogical contentof the formula. For instance,
Cnpr(T) = Cnur(p D p) C Cnpr(p D q).

Recall that, undex-model semantics, every formula can be transformed intangunotion of
formulas in the following normal form:

ABU-C)>\/(AUu-D) 2)

where A, B,C, D are sets of atoms (cf., for = HT, see Cabalar & Ferraris, 2007, Thm. 2;
Truszczynski, 2010, Thm. 9 for = FLP). That is, for every formulap, there is a conjunction
of formulas in the form (2) which is strongh+equivalent tap.

A formula of the form (2) is called aule, which is also generally written as

ai;...;apinotdy;...;notd, < by, ..., bg,notcy, ..., notcy, 3

whered = {a;|]1 <1 <1}, B={b|1 <i<k},C={¢|l <i<m}andD = {d;|1 <i <n}.
A logic programis a finite set of rules. Let be a rule of the form (2). Itis said to be

e disjunctiveif D = 0;

e positiveif C = D = ();

e normalif |[A] < 1andD = (j; and
e Hornif |4 <1andC = D = 0.

A logic program isdisjunctive(resp. positive, normalandHorn) iff it consists of disjunctive
(resp. positive, normal, Horn) rules. A logic program-isonsistent (undex-stable model seman-
tics)if it has at least one-stable model.

Itis known that every logic program has the santemodels andLP-models (cf., see Truszczyn-
ski, 2010, Prop. 8).

Proposition 2 Every logic program has the samg- and FLP-models.

3. Characterizations of Knowledge Equivalence

In the section, from the perspective simodels, we consider the characterization for knowledge
equivalence of various logic programs firstly, and relatekhowledge equivalence to the equiva-
lence of propositional logic secondly.
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3.1 Model Theoretical Characterization

We firstly recall some basic properties of theatisfiability (Ferraris & Lifschitz, 2005; Ferraris,
2005; Truszczynski, 2010).

Proposition 3 Lety be a formulaandX C Y C A.
() If (X.Y) E. o then(Y)Y) k. ¢ (.Y E o).
(i) (X,Y) | ot Y = .

(i) (X,Y) E. oiff X = Redu(p,Y).

A collection M of x-interpretations is-expressiblevhenever there exists a formutesuch that
Mod, (¢) = M. A collection M of x-interpretations may be netexpressible. For instance, there
is no formula whose--models are the ones iM = {(0,{p})}. The reason is that if there is a
formula ¢ such thatMod, (¢) = M then we have{p}, {p}) = ¢ by (i) of Proposition 3. This
requires({p}, {p}) belonging toMod, (), a contradiction.

Given a formulap and X C Y C A, (X,Y) is ax-countermodebf ¢ if (X,Y) . ¢ and
(YY) v o5 (Y,Y) is ax-countermodebf ¢ if (YY) (4, ¢. Let X C Y C A, we define the
following formulas:

Air(X,Y) = AXU=Y) 2 /(Y \ X)u=(Y'\ X)), (4)
Mp(X,Y) = A(XU-Y) 2 \/(Xu-Y), (5)
AV, Y)= Ay u-Y)> L, (6)
EXY)= AXu-Y) 2 \/(Y\X). (7)

Here\,(X,Y) and\(Y,Y) is to capture the-countermodel X, Y) and(Y,Y’) respectively.
The following lemma shows that thecountermodel can be captured by a formula (cf., for
* = HT, see Cabalar & Ferraris, 2007, Prop. 1; Truszczynski, 2Pi@ps. 5 and 6 fox = FLP).

Lemmal LletX cY CAandU CV C A.
(i) (U,V)isax-countermodel oA, (X,Y)iff U = X andV =Y.
(i) (U,V)is ax-countermodel oA(Y,Y)iff V =Y.
Proposition 4 A collection M of x-interpretations is«-expressible iff
(X,Y) € M implies(Y,Y) € M. (8)
Actually, if M satisfy condition (8) then the following logic program
Il = {(M(X,Y(X, Y)Y ¢ Mand(Y,Y) e M} U{NY,Y)(Y,Y) ¢ M}

capturesM in the sense thatlod, (I1,) = M.
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Note that Wong (2009) presented a model-theoretical cteraation for theHT-models of
disjunctive logic programs (cf., see Wong, 2009, Thm. 2F0rmally speaking, a collectioM of
HT-interpretations iglisjunctivelyHT-expressiblgi.e., there is a disjunctive logic prograrhsuch
thatMod,;(II) = M, iff the condition (8) and the following one hold:

if (X,Y)e M, Y CY'and(Y",Y') € Mthen(X,Y’) € M. 9)
Together with Proposition 2, we have

Corollary 1 A collection M of FLP-interpretations is disjunctively¥Lp-expressible iff the condi-
tions (8) and (9) hold.

Actually, if M satisfies the conditions (8) and (9) then the following disjive logic program
capturesm.

= {&(X,Y)|(X,Y) ¢ Mand(Y,Y) € M} U{AY,Y)[(Y,Y) ¢ M}.

Lemma 2 Let A, B be two sets of atoms, amll C Y C A (X,Y) . ABD VAIff X
ABD>VAandY EABDVA.

Proposition 5 A setM of x-interpretations igositively x-expressiblei.e., there is a positive logic
programII s.tMod, (II) = M, iff M satisfies the criteria:

(X,Y) e Miff X CY,(X,X) e Mand(Y,Y) € M. (10)

As a matter of fact, in the cas#t satisfies the condition (10), the positive logic progrém=
{ANX DV X|(X,X) ¢ M} capturesM.

Corollary 2 Two positive logic programs are stronghyequivalent if and only if they are equivalent
in propositional logic.

Eiter, Fink, Tompits, and Woltran (2004) have showed thatsgudctive logic progranil is
strongly equivalent to a normal logic program if and onlylifs closed under here-intersection, i.e.,
for every pair ofHT-models(X,Y) and(X’,Y) of II, (X N X', Y") is also arHT-model ofII (cf.,
see Eiter et al., 2004, Thms. 1 and 2). In terms of the charaaten of disjunctive logic programs
and Proposition 2, we obtainxamodel characterization for normal logic programs as fesio

Corollary 3 A setM of x-interpretations isnormally x-expressiblei.e., there is a normal logic
programII such thatMod, (IT) = M, iff M satisfies, in addition to (8) and (9), the following
criteria:

if (X,)Y)e Mand(X',Y)e Mthen(XNX"Y)e M. (11)

Proposition 6 A collection M of x-interpretations ifHorn x-expressiblei.e., there is a Horn logic
programII such thatMod, (IT) = M, iff M satisfies, in addition to (10), the following criteria:

(X,)Yye Mand(H,T) e M= (XNH,YNT) e M. (12)
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3.2 Relating Knowledge Equivalence to Propositional Logic

It is proved that strong equivalence of logic programs ursii@ible model semantics can be related
to the equivalence in propositional logic (Pearce et al012@in, 2002). This holds for the strong
FLP-equivalence of logic programs as we will show in the follogi

Firstly, we extend the languag&, to £ 4,4 where A’ = {p’|p € A} andp’s are fresh atoms.
For each expressiom of £ 4, by o/ we denote the result obtained framby replacing each atom
from A by the corresponding atopi in A’. In the following we denote

AA) ={pDp |pe A} (13)

Please note that, for each modélof A(A), M has a splitting/ 4 andM 4 whereM 4 = M N A
andM 4 = M N A’ and, for everyp € M 4, the atomp’ of A’ belongs taM 4. For M C A’ we
denote byM* the set{p € Alp’ € M}.

Definition 6 7r[.] and e p[.] are recursively defined as follows:
(T1) 7 [L] = 1L;
(T2) 7ulp] = p;
(T3) T[p1 0 o] = T[e1] © Ti[po] Whereo € {A, V};
(HT-T4) Turl1 D o] = (1 D ¢5) A (Turlpr] D Turlipa));
(FLP-T4) Tecplip1 D o] = (¢) D ¥h) A (01 At D Trep[ipa])-

Please note that the translatiof; is same to the translation defined by Pearce, Tompits, and
Woltran (2001). One can verify thatr[-¢] = —¢' A =741[p], While e p[—p] = —¢'. Given a
theoryX of £ 4, we definer, [£] = {7.]¢] | ¢ € £}. Itis evident thatr, [¥] is in linear size of.

Example 3 Letp = p VvV —p D p. We have that

Turle] = (' V =p) 2P ) APV -2 A D) Dp) =7,
Tee[e] = (' V =p) DP) A ((pV =p) A"V —p') Dp) =p" Ap.
The uniquerLP-model (over the signaturgp}) of ¢ is ({p}, {p}). However,p has twoHT-models

(0,{p}) and({p}, {p}). Over the signaturép, p’}, one can easily check thét.;r[¢]} U A(A) has
two models{p, p'} and{p'}, while {7e.p[¢]} U A(A) has a unique mod€lp, p’}.

Proposition 7 Lety = A(BU-C) D /(AU -D), whereA, B,C, D are subsets ail. Then we
haVeA(A) ): TFLP[SD] <~ THT[SD]-

The following proposition connects theequivalence with the equivalence in classical proposi-

tional logic (cf., forx = HT, see Pearce et al., 2001, Lem. 2).

Proposition 8 Let ¢ be a formula of4 and X C Y C A. Then(X,Y') is a x-model ofyp iff
X UY'is amodel ofA(A) U {7 [p]}.
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The following theorem shows that the stromgequivalence of logic programs undeistable
model semantics can be reduced to the equivalence in ptigpadilogic (cf., forx = HT, see
Ferraris et al., 2011, Thm. 9; or Lin & Zhou, 2011, (5) of Thn). 6

Theorem 4 Two formulasy andi have the same-models (overd) iff A(A)U{7.[p]} andA(A)U
{7«[¢]} have the same models (ovérU A").

Based on the theorem, we obtain the following complexitylte&f., for x = HT, see Pearce,
Tompits, & Woltran, 2009, Thms. 8 and 11).

Proposition 9 (i) The problem of deciding if a formula issatisfiable ifNP-complete.
(i) The problem of deciding if two formulas axeequivalent isco-NRcomplete.

4. Knowledge Forgetting in Logic Programs

As mentioned in the introduction, we concentrate on the Kkaedge forgetting of logic programs
under stable model semantics. It is formally stated asvatig:

Definition 7 (Knowledge forgetting) LetIl be a logic program and” C A. A logic program is
a result ofx-knowledge forgetting” from II, if and only if consists of the-knowledge ofI that
mentions no atom frory.

We will show that such a knowledge forgetting result alwaxiste and it is unique up to strong
equivalence (cf. Theorem 6) after a semantforgetting is defined and explored.

LetV, X, Y be sets of atoms. The Sgtis VV-bisimilarto X, writtenY ~y X, if Y\V = X\ V.
It intuitively states that the interpretatiord§ andY agree with each other on those atoms ndt’in
Two *-interpretationg H, T') and (X, Y') areV -bisimilar, written (H, T') ~y (X, Y), if H ~y X
andT ~y Y. Now, we are in the position to define the semantic knowledggetting in terms of
bisimulation.

Definition 8 (Semantic knowledge forgetting) Let ¢ be a formula and” C A. A formulay is a
result of (semanticy-forgettingV' from  whenever, for every-interpretation M ,

M € Mod, () iff M’ € Mod, () s.t M ~y M. (14)

According the definition, one can see that thmodels ofy) can somehow exactly constructed from
those ofyy. This motivates us to define the following notion of extensio

Let V, X,Y be sets of atoms. Th¥-extensionof X, denoted byX.y, is the collection of
interpretations that ar&-bisimilar to X. The V-extensionof a x-interpretation(H, "), denoted
by (H, Ty, is the collection ofx-interpretations that ar&-similar to (H,T’). For instance, let
(H,T) = ({p.q}.{p.q}) andV = {q,r}. Then(H,T),, contains({p},{p}), ({p}.{p.q}),
{p}.{p,q,7}), {p,q,7},{p,q,r}) and so on. Intuitively speaking, tHé-extension of an inter-
pretation} is the collection of interpretations formed frakd by freely adding or removing some
atoms inV. TheV-extensiorof a collectionM of (x-)interpretations, written\1;y/, is the collec-
tion UBEM 5TV-

In classical propositional logic iM corresponds to a formula, i.e. M = Mod(¢y), thenM
corresponds to a formula whose truth value has nothing toittothe atoms inl’. The intended
meaning in the case efmodels is similar when\ 1y, corresponds to a formula undemodel
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semantics that is relevant to only the atoms not’inin other words, suppos#t;,, = Mod, ().

If (X,Y) . ¢othen(H,T) =, ¢ whereH (resp. T) is obtained fromX (resp. Y) by freely
adding or removing any atoms in wheneverd C T. The following lemma shows an equivalent
condition for the semantie-knowledge forgetting.

Lemma 3 Lety be a formula and” C A. A formulay is aresult ofx-forgettingV” from ¢, iff the
following condition holds:

Mod,(¢) = Mod.(¢)v . (15)

This condition ofx-forgetting is a generalization of the forgetting in proiiosal logic (Lin &
Reiter, 1994) in terms of the following corollary.

Corollary 5 A formula is a result of forgetting a se” of atoms in a formulap iff Mod(¢) =
Mod(p);1-, whereMod(.) refers to classical propositional logic.

A syntactic counterpart of the forgetting in propositiof@dic is defined as follows (Lin, 2001;
Lang et al., 2003):

Forget(y, {p}) = wlp/L] vV ¢[p/T],
Forget(¢, V U {p}) = Forget(Forget(y, {p}),V)

wherep[p/T] (resp.¢[p/L]) is the formula obtained fromp by replacing every occurrence of the
atomp with T (resp.L).

As x-interpretations are related to the given signatdrén what follows, we shall assume that
the signature of a formula/theory is implicitly given by taeoms occurring in the formula/theory,
unless explicitly stated otherwise. The example belowsitltes how-forgetting results can be
computed.

Example 4 Let ¢ be the following formula
P> AN(@Op)A(=p D L)A (gD L)

Over the signaturgp, ¢}, we haveMod, (¢) = {(0,{p,q}), {p,q}.{pr.q})}. Please note here
that x can be eitheHT or FLP. Then from Definition 8, we can verify thdflod, (¢)i;, =
{0, {q}), ({a},{a}) }+{p} - It corresponds to the formuta = (pA—q O L)A(=pA—q) D L under
thex-model semantics by Proposition 4. As a matter of fact, wellae, —¢ O 1L =, -—q.

Note thatForget(p, {p}) = ¢[p/T] V ¢[p/L] = q and——q #, q. It shows that, unlike the
syntactic counterpart of the forgetting in classical psifonal logic, thex-forgetting results cannot
be computed viap[p/T] V ¢[p/L] asMod,(~~q) = {(0,{q}), ({a}, {q})}, while Mod.(q) =
{{{a}.{a})} (over the signaturgq}). O

4.1 Expressibility

Please note that Definition 8 does not guarantee the exéstdribe forgetting results, however the
next theorem shows that theforgetting result always exists. It also implies that #h#orgetting
result is unique (up to strongequivalence).
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Theorem 6 (Expressibility theorem) Let ¢ be a formula andV a set of atoms. There exists a
formula such thatMod, (¢) = Mod,(¢)v .

Here, the uniqueness up to strorgquivalence of the-forgetting result follows from the fact
that, if a formulay)’ is a resultx-forgetting V' from ¢ as well thenMod, (') = Mod.(¢)1v =
Mod, (1)), which shows that) and«)’ are stronglyx-equivalent under the-stable model semantics.

Based on the expressibility result and by abusing the déantave denote the forgetting result
by Forget, (¢, V):

Definition 9 Let ¢ be a formula andV’ C A. Forget,(p,V) is a formulay s.t Mod,(¢) =
Mod, (¢)+v, i.e.,Forget, (¢, V) is a result ofx-forgetting V' from .

In this senséorget  is an operator which maps a formula and a set of atoms to a farrAacording
to Definition 8 and the expressibility theorem, the follog/icorollary easily follows.

Corollary 7 Let, p be formulas)}V, V; and V5 be sets of atoms.
(i) Forget,(Forget,(¢,V1),V2) =, Forget, (Forget, (¢, V2), V1).

(i) If ¥ =, ¢ thenForget, (v, V') =, Forget, (o, V).

It firstly states thak-forgetting is independent of the order of forgotten atoamgl secondly, the
*-forgetting preserves strongequivalence of logic programs undestable model semantics.

To further investigate the properties of the forgetting,imteoduce a notion of irrelevance under
*-model semantics.

Definition 10 A formulay is x-irrelevantto a setl” of atoms, denoted d&, (), V'), if there exists
a formula¢ mentioning no atoms frovi and) =, ¢.

Some basic properties enforgetting are presented below.
Proposition 10 Let and be two formulas and’” a set of atoms.
(i) IR« (Forget, (v, V), V).
(i) ¢ has ax-model iffForget, (¢, V') has.
(iii) 4 =« Forget, (v, V).
(iv) If ¢ =4 ¢ thenForget, (v, V) [=, Forget, (o, V).
(v) Forget, (¢ V ¢, V) =, Forget, (¢, V) V Forget, (¢, V).
(vi) Forget, (¢ A, V) =4 Forget, (1, V) A Forget, (¢, V).

(vii) Forget, (¢ A p, V) =, Forget, (¥, V) A pif IR (p, V).
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Intuitively, (i) of the Proposition says that theforgetting result is irrelevant to atoms In,
i.e., those forgotten atoms. In this sense, the signatusefofgetting result can be constrained
to A\ V. The intended meaning of the others can be easily read ogit. item (iii) says that this
forgetting is a kind of weakening, while item (v) shows that forgetting has a distributive property
for disjunction.

As mentioned earlier, disjunctive programs, positive paogs, normal logic programs and Horn
programs are four types of special cases of (arbitrarylpgbgrams under our setting. Then it is
interesting to consider whether the expressibility resigib holds for each of these special programs.
For instance, we would like to know whether the resultdbrgetting in a disjunctive (positive,
normal, and Horn) logic program is still expressible by gutistive (resp. positive, normal, and
Horn) logic program.

As indicated by the following two examplesT- andrFLp-forgetting in disjunctive, positive and
normal logic programs is possibly not expressible in eitfisjunctive or positive logic programs.
For simplicity, we identify a singleton sétv} asa when it is clear from its context, and thus we
denoteForget, (¥, {p}) asForget, (¥, p), andIR. (¢, {p}) asIR.(¢,p), and M,y asMy, etc..

Example 5 Consider the following normal logic prograbhover signaturep, ¢}:
(PO A (mgDp)A(pAgDL).
We have thaMod, (II) = {({p}, {p}), ({d}, {4})} and

Mod.,(I), = {(0,8), ({q}, {a}) }1{p)-

Here({p}, {p})i = (0, 0);,,- Itimplies thatForget, (11, p) =, ¢V —q. It can be easily seen that
q V —q cannot be expressed as a disjunctive logic program bedaodg(11);,, does not satisfy (9).
HenceForget, (I, p) cannot be expressed by a normal logic program.

Please note that—q O ¢ =7 ¢V —q. Thus——q D qis also a result ofiT-forgettingp from II.
However,——¢ D ¢ is not a result ofFLP-forgettingp fromIl as——q¢ D g =pp T ZrpqV ~q. O

Example 6 LetII be a positive logic program over signatype ¢, v} as follows:
(pVaVvr)ANpAgDT)A(PAT D) A(gAT D p).
Itis not difficult to verify that, over the signatufe, r }, Mod, (II),; consists of

0,0), 0. {p,r1), {p}. {p}), {p} A, rh), rk Arh), (rk Ap, rh), Qo ek o))

Clearly it does not satisfy the condition (9). Hence it cah captured by a disjunctive logic pro-
gram. As a matter of fact, we have the following

Forget, .+ (IL, q) =ur Aur(0, {p}) A A1 (0, {r}) = (=r D pV =p)A(-p DTV 1),
Forgete p(IL, q) =rip Are(0. {p}) A Aeip(0,{r}) = (=r D pVrV-p)A(=pDpVrV-r)

in terms of Proposition 4. Interestingly, this example abkows that, though a logic program may
have the sameT-models asLpP-models, itsHT-forgetting result may be different from it_p-
forgetting result. O
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The HT- and FLP-forgetting in Horn logic programs is of special interestcause unlike dis-
junctive, positive and normal logic programs, the resultiof and FLP-forgetting result in a Horn
logic program is always expressible by a Horn logic progragwve show below.

Theorem 8 (Horn expressibility) LetII be a Horn logic program and” C A. There is a Horn
logic programII’ such thatForget, (11, V') =, IT'.

Having obtained the model-theoretical characterizatioin® classes of disjunctive and normal
logic programs respectively, we can easily derive a sufficénd necessary condition farr- and
FLP-forgetting results to remain in the same class, i.e., thaltef HT- andFLP-forgetting a set of
atoms in a disjunctive (resp. normal) logic program is autisfive (resp. normal) logic program.

Proposition 11 Let IT be a disjunctive logic programi” C A. We have thafForget, (II, V) is
expressible in disjunctive logic programs if and only if,

<H1,T1> ’:* H, (TQ,TQ> ):* 1I andT1 CTh) = E|<H3,T3> ):* IT such that<H3,T3> ~y (Hl,T2>.

Proposition 12 LetIT be a normal logic program}” C A. ThenForget, (II, V') is expressible in
normal logic programs if and only if, in addition to conditid16), the following condition holds,

(Hl,T1> ):* H, (HQ,T2> ):* 11 andT1 ~Yy T2
= E|<H3,T3> ):* II such thatH3 ~y Hy N Hy and (Tg ~y Th or Ty ~y, Tg) (16)

4.2 Forgetting Postulates

Zhang and Zhou (2009) proposed four forgetting postulatékeir work of knowledge forgetting,
and showed that their knowledge forgetting can be precisledyacterized by the four postulates.
They further argued that these postulates should be viewedggneral semantic characterization
for knowledge forgetting in other logics. Indeed, the dealspropositional forgetting can be also
characterized by these postulates. In terms of forgettiriggic programs, as we addressed in the
introduction, imposing these postulates is not feasibteetasting approaches. In the following,
we show thatx-forgetting is exactly captured by these postulates, whiehthink is one major
advantage over other logic program forgetting approaches.

The notion of forgetting is closely related to that of unifointerpolation property (Visser, 1996;
Goranko & Otto, 2007), for instance, the forgetting in dggwn logics (Lutz & Wolter, 2011) and
the semantic forgetting in logic programs (Gabbay, Peatc¥alverde, 2011). The following
corollary follows from Theorem 6, which actually impliesthniform interpolation propertyf the
logics underx-model semantics. Namely, for any formulasand« with ¢ =, ¢, there exists a
formula¢ such that) =, &, £ =« ¢ and¢ contains only the atoms occurring in batrandy. The
formula¢ is called auniform interpolantof ) andy. This is stated as:

Corollary 9 Letwy andy be two formulas}” a set of atoms antR, (¢, V).

Ve iff Forget, (v, V) .

Let ¢ and ¢ be two formulas and’ a set of atoms. The following are Zhang-Zhou’s four
postulates for logic programs undemodel semantics.
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(W) Weakening) =, ¢.

(PP) Positive persistence: IR, (£, V) andy =, £ thenp =, €.
(NP) Negative persistence: iR, (£, V') andy (4, € theny -, €.
(IR) IrrelevanceilR, (¢, V).

By specifyingy =, Forget, (¢, V), (W), (PP), (NP) and (R) are calledoostulates for knowledge
forgettingin logic programs undes-stable model semantics. Vig, is a result ofx-forgetting V'
in ¢. Based on the uniform interpolation property (cf. Coroll®), we can show the following
representation theorem.

Theorem 10 (Representation theorem)Let ) and be two formulas and” a set of atoms. Then
the following statements are equivalent:

(i) ¢ =« Forget,(¢,V).
(i) ¢ =A{¢' [V Ex ' andIR, (¢, V)}.
(iii) Postulates W), (PP), (NP) and (R) hold.

This theorem justifies that the knowledge forgetting (cf.fibidon 7) exists and is unique up to
strong equivalence.
An obvious consequence follows from the representatioarém is that

Forget, (v, V) =« {¢ | ¢ = ¢ @andIR (¢, V) }.

It says that the result of-forgetting V' from ¢ consists of thex-logical consequence a@f that
is x-irrelevant toV. For this reason the forgetting is a knowledge forgettindogic programs
under stable models semantics. As we have mentioned in ttoeluction that none of the other
forgetting approaches in logic programs is a knowledgeefbirgg since it does not satisfy some of
the postulates (see Section 5 for details).

One should note that the representation theorem is apfgidab the forgetting in classical

propositional logic, vizForget(o, V) = {¢ | ¢ = ¢ andIR(y, V)}.

4.3 Relating to Propositional Forgetting

It has been shown that strong equivalence of logic programg e related to the equivalence of
propositional logic (Pearce et al., 2001; Lin, 2002). As#Hergetting preserves strong equivalence
of logic programs undes-stable model semantics, it is worth exploring further amstions between
*-forgetting and the forgetting in propositional logic. Imig section, we undertake an in-depth
investigation on this aspect.

We first provide a direct connection betwesetfiorgetting and propositional forgetting via the
following proposition.

Proposition 13 Let ¢, ¢’, ¢ be formulas and/ C A such thaty =, Forget, (¢, V) and ¢’ =
Forget(¢y, V). Then

(i) p=¢.
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(i) ¢ e

The result (i) in Proposition 13 simply says that the restlé-forgetting and classical proposi-
tional forgetting are equivalent in classical propositiblogic. Thus the forgetting in classic propo-
sitional logic can be computed bysaforgetting in logic programs. However as we have seen in
Example 4 Forget, (1, V') is possibly not-equivalent tdForget (¢, V'). The reverse of (ii) does not
hold generally. For instanc&prget, (——p, q) =, ——p, while Forget(——p, q¢) = p, and evidently
——p £, p. From this result and Theorem 8, we immediately have thewatig corollary.

Corollary 11 LetII be a Horn logic program and” a set of atoms. Theforget(II, V') is express-
ible by a Horn logic program.

The following result states that, for Horn logic programsforgetting and the forgetting of
propositional logic are stronghy-equivalent. Thus it provides a method of computiafprgetting
results of Horn logic programs through the propositionadétting.

Proposition 14 LetIT andII’ be two Horn logic programs, anti’ a set of atoms such that’ =
Forget(II, V). ThenIl' =, Forget, (I, V).

The following proposition states that theforgetting of double negative formulas is closely
connected with the classical propositional forgettingiolitwill be used to prove some complexity
results later.

Proposition 15 Let+ andy be two formulas and” a set of atoms.
() ¢ = Forget(y, V) iff =—¢ =, Forget, (==, V).
(i) Forget(y, V') = Forget(y, V) iff Forget, (——¢, V') =, Forget, (==, V).

As it is known that the strong equivalence of logic prograsnadsed related to the equivalence
in propositional logic by translating logic programs int@positional theories (Pearce et al., 2001,
Lin, 2002). This motivates us to investigate the conneckietween the forgettings in the view of
the translations. Now our main result of this section isestats follows.

Theorem 12 (-forgetting vs propositional forgetting) Lett and ¢ be two formulas of’ 4 and
V C A. Then

¢ =, Forget, (1, V) iff A(A) = 7]p] +> Forget(A(A) U {r ]}, V U V).
By Theorem 12, we know that to check whether a formpla a result ofx-forgetting a set
V' of atoms from a formulay, it is equivalent to check whether,[y] is classically equivalent
to Forget(A(A) U {7[¢]},V U V') under the theonA(A). The following example shows an
application of this theorem.

Example 7 [Example 5 continued] Recall thét is the following formula:

(pDq)A(~gDp)A(pAgD L)
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andForget, (11, p) =, ¢ V —q. Over the signaturép, ¢}, A(A) = (p D p’) A (¢ D ¢') and, the
program translation yields:

) =(p' DN (0 D)A(=d Dp)A (=g D) A (=p V).
Now we have thaForget (7, [II] U A(A), {p,p'}) is equivalent to:
(mgA=¢")V(gNng), e (@ DgN(@Dd)

which is equivalent to-¢’ V ¢ under the theonA({q}) = {¢ D ¢}. One can further check that
T«[mqV q] = =¢' N—=qV q = —¢' Vv ¢ (under the theonA ({¢})). Thus the formula-q V ¢ is a result
of x-forgettingp from II by Theorem 12. g

The following example further shows thaf(.A) occurring inForget, ({7[¢]} UA(A), VUV")
is necessary for Theorem 12.

Example 8 [Continued from Example 6] Recall that = {p,q,7}, A(A) ={p D p',q D ¢,r D
r’} andII consists of

(pVaVr)A(pAgDT)AN(pATDq)A(gAT D D).
We have that,
T[] =TT A X,
A(A) EnI « TOAY,
Teellll = (pV gV T)APAGAY NG DT)ANDPATAY AT DN (GATAG AT Dp)AY

whereX = (' A¢ DrYAN@P' AP D)YN(d A D).
One can check that

Forget(rr[I],{q,¢'}) = T,
A(A) = Forget(rep[lT], {q,¢'}) ¢ T.

Recall that the formula; = (= D pV —p) A (—p D rV —r) is a result ofHT-forgettingq from IT;
andypy = (-r DpVrV-p)A(-pDpVrV-r)isaresult offLp-forgetting ¢ from II. We have
that

Turlp1] = QLA (r A= DpV —p A=p YA (mpA=p' DV T A,
Teplp2) = b A(=r A=r' DpVrV=p)A(=pA-p DpVrv-r).
Under the theoryA(.A), we have
A(A) E murler] & @ DpVvr)A (@ Drvp),
A(A) E murler] & @ DpVv ) A Drvyp).

One can verify further that the modgb'} of A(.A) is not a model ofr,r[¢1], nor it is a model of
Teep[p2), 1€ A(A) B Turlp1] < T andA(A) = Tep[e2] <> T. Actually, we have that,

A(A) [ Forget({n[TI} UA(A). {g.¢'}) & (0 ¢ ) V (p & =r) A= A1),
One can check further that
AAE @ OpV YA DrvY) < (0 <)V (pe ) A= Ar)),
which shows thap; (resp.y») is a result ofHT-forgetting (respFLpP-forgetting) g from II. O
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The following result states that we can reduce checking lndrehex-forgetting results of two
formulas are strongly-equivalent to checking whether the propositional foiggtresults of cor-
responding two formulas are equivalent.

Proposition 16 Letvy and¢ be two formulas of 4 and V" a set of atoms. Thefforget, (v, V') =,
Forget, (i, V) iff the following condition holds:

Forget({7:[1]} UA(A),V U V') = Forget({r[¢]} UA(A), VU V).

4.4 Computation and Complexity

Theorem 6 and Propositions 4 and 10 imply a naive approacbnpatex-forgetting results. For-
mally speaking, given a formulé over a signatured and a sel” of atoms,Forget, (¢, V') can be
computed as follows:

(Step 1) Evaluating ali-models ofy), denoted byM.

(Step 2) RestriciM to A\ V, denoted byM,y, i.e.

My = {(H\V, T\ V)|(H,T) € M}.

(Step 3) Enumerating the following formulas (over the stgraA \ V) from M,y :

o M (X,Y)if (X,Y) ¢ My but(Y,Y) € My,
o \Y,Y)if (Y,Y) ¢ M.

(Step 4) Finally, conjunct all the constructed formulas)ated by.p.
Corollary 13 Let, V andy be given as above. Then=, Forget, (¢, V).

Alternatively, in terms of Theorem 10, we can comphteget, (¢, V') by enumerating the-
consequences af that arex-irrelevant toV. As there exist sound and complete axiomatic systems
for the HT-logic (Jongh & Hendriks, 2003), checkingr-consequence relation is axiomatically
doable. Though a sound and complete axiomatic systemrLfelogic is recently unknown, we still
can enumerate all the formulas of form (2) over the signatirelV and check if they areLp-
consequence af. Nevertheless, it is also observed that from a computdtideapoint, like the
propositional forgetting, each of the above two approagtmdd be expensive. This appears to be
inevitable in terms of the following complexity results,less the complexity hierarchy collapses.

Theorem 14 Let+ and ¢ be two formulas and” a set of atoms.
(i) The problem of deciding i =, Forget, (1, V') is co-NRcomplete.
(ii) The problem of deciding #orget, (», V) =, Forget, (¢, V) is I} -complete.

(iii) The problem of deciding i> =, Forget, (v, V) is II5 -complete.
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According to our representation theorem (i.e. Theoremth@)result (i) in Theorem 14 means
that checking ify) is x-irrelevant toV/, i.e. IR, (¢, V), is intractable. The result (ii) of Theorem 14,
on the other hand, presents the complexity-frgetting equivalence checking, i.e., if two formulas
are stronglyx-equivalent when they are restricted to a common signaturbs last result (iii) of
Theorem 14 states that checking if a formula is a resuktfairgetting is generally difficult.

Proposition 17 Let+ andy be two formulas and” a set of atoms.
(i) The problem of deciding whether |=, Forget, (o, V) is II5 -complete.
(i) The problem of deciding wheth&orget, (1, V') =, ¢ is co-NRcomplete.

Theorem 14 and Proposition 17 tell us that feforgetting, in general the complexity of re-
sulting checking and inference problems is located at theedavel of the complexity polynomial
hierarchy as the propositional forgetting.

4.5 Conflict Solving Based on Knowledge Forgetting

In the following, we consider the application of the propb$ergetting in conflict solving for logic
program contexts, that represent a knowledge system tiogs knowledge bases of multiple
agents.

Definition 11 Alogic program contexs ann-ary tuple2 = (I1y, . . ., II,,) wherell; is a consistent
logic program.(2 is x-conflict-freeif IT; U - - - U IL,, is consistent unde#-stable model semantics.

Definition 12 LetQ = (I, ...,II,) be a logic program context. A-solutionof 2 is a minimal
subsetS of A such that(Forget, (I1;, S), . .., Forget, (II,,, S)) is x-conflict-free, where4 is the
underlying signature.

It is obvious that) is ax-solution ofx-conflict-free logic program conteXt.
We consider the following simplified Zhang and Foo’s confliclving scenario (cf., see Zhang
& Foo, 2006, Ex. 6).

Example 9 A couple John and Mary are discussing their family investinpdan. There are four
different shareshareA, shareB, share@nd share) whereshareAand shareBare of high risk
but also have high returshareCandshareDare of low risk and may be suitable for a long term
investment. John’s and Mary’s investment preference dwed shares are encoded as the following
logic programdI; andIl,, respectively:

II; : 11, :

r1 :SA< not SB, 7 :SC <,

r9 :SC <« not sD, ré :SD +,

rg :SD < not sC, 1% :SB < not SA not sC,
r4 : < SC,sD, ) 1 < SA SB,

wheres#stands foisharéf. The intuitive meaning of these rules can be easily readiagt ruler;
says that John wants to bapareAif he don’t buyshareB while rulesrsy, r3 andr, mean that John
wants to buyshareCor shareD but not both of them.
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As one can see that ; U IT; has nox-stable model due to the confliction between nujeand
1,75, the logic program contex = (I1;,1I,,) is notx-conflict-free.
For S = {sD}, we have the following

Forget,,;(IL;, S) =ur {SA+ not sB, SC; not sSC«},
Forget,;1(I1ps, S) =nr {SC+, SB «+ not sA not sC, + sA sB}.

One can check thdtorget, ;(Il7, S) U Forget,;(I5s, S) has a uniqueiT-stable modelsA sC}.
Thus S is anHT-solution of 2. It can be said that John and Mary may have an agreement on
their investment plan about shargsareA shareBand shareCif they agree to give up the belief
(knowledge) aboushareD It results in an investment to sharslareAand shareG but not to
shareB

One can further check that, under the>-stable model semantics, if John and Mary can give up
the belief aboushareDthen it results in the same investment plan to shahaseAandshareC but
not to shareshareB The reason is th&borget, (117, S)UForgety, »(I15, S) has a uniqueLp-stable
model{sA sC}.

5. Related Work

In this section we compare theforgetting with weak and strong forgetting (Zhang & FooQaR
semantic forgetting (Eiter & Wang, 2008) and the forgetimpgrators-s andFyy (Wong, 2009).

5.1 Weak and Strong Forgetting

LetII be a normal logic program anda propositional atom. Theeductionof IT with respect tg,
denoted byRed(IT, {p}), is the normal logic program obtained frdmby

(1) for each rule- of IT with p € Headr), if there is a rule”’ in II such thatp € Body" ('), then
replacingr’ with
Headr’) < Body(r), Body(r') \ {p}.

(2) if there is such a rule’ in IT and it has been replaced by a new rule in the previous step, the
removing the rule- from the remaining normal logic program.

Let X be a set of propositional atoms. Then teeductionof IT with respect toX is inductively
defined as follows:

Red(IL, 0) = II,
Red(II, X U {p}) = Red(Red(IL, {p}), X).

Thestrong forgetting» in a normal logic progranil is the normal logic progrargForget(I1, {p})
obtained fromRed(I1, {p}) by removing each rule if either » is valid ® or p € Headr) U
Body" (r) U Body (r). Theweak forgetting in II is the normal logic progranaVForget (11, {p})
obtained fromRed (I, {p}) by firstly removing each rule if either r is valid, orp € Headr) U
Body" () and then removingsiot p” from the remaining rules.

5. Aruler is valid if Headr) N Body" (r) # () or Body" () N Body (r) # 0.
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Let X be a set of atoms. The strong (and weak) forgetfina 11 is recursively defined as

SForget (1, () = II; WForget(IL, ) = II;
SForget (I, X U {p}) = SForget(SForget(IL, {p}), X);
WForget(II, X U {p}) = WForget(WForget(IL, {p}), X).

It is known that the two forgetting operators are indepehaéhe ordering of forgotten atoms in
the sense of strongT-equivalence of logic programs under-stable model semantics (cf., see
Zhang & Foo, 2006, Prop. 2).

Example 10 Consider the below two normal logic programs:

O={p<yq,  q<p, 1< notp},
Y={p<«gq q < p, r < notq}.

One can check thdl andX: are strongly equivalent. We have that

SForget(I1, {p}) = 0, WForget(I1, {p}) = {r <},
SForget(X, {p}) = WForget(X, {p}) = {r + not q}.

The example shows that neither weak forgetting preservesgsequivalence, nor is strong forget-
ting. One can further verify thdll =, —¢ A = D L andIl }~, r for x € {HT,FLP}. Thus
the strong forgetting does not satisfy “positive persiségnand the weak forgetting does not sat-
isfy “weakening” and “negative persistence”. Actuallyr feT- and FLP-forgetting, we have the
following

Forgety; (1L, p) =nr Forget, (X, p) =ur {—g A —-r D L},
Forgetr (1L, p) =¢ip Forget (X, p) =ep {7g A —-r D L}

Herell = » X follows from the fact thafl =,; ¥ and Proposition 2. ]

5.2 Semantic Forgetting

Having addressed certain issues of weak and strong fargeffiiter and Wang (2008) proposed
a semantic forgetting for consistent disjunctive logicgreons. Formally speaking, léf be a
consistent disjunctive logic program apan atom. A sef\/ of atoms is g-stable modebf II iff

M is a stable model dfl and there is no stable modkl™* of IT such thatV* \ {p} C M \ {p}. A
disjunctive logic progranil’ represents the result of forgetting abgtin II, if

e II’ does not mention the atom and
e asetM’ of atoms is a stable model &F iff II has ap-stable model\/ such thatV’ ~,, M.

In terms of the above definition, such forgetting resultsrataunique under strong equivalence.
This means, their forgetting does not preserve strong atprice. To compute the result of for-
getting an atom in a consistent disjunctive logic programytproposed three algorithnisrget,
forget, andforgets (Eiter & Wang, 2008). The example below further demonssréite difference
between this semantic forgetting and théorgetting.
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Example 11 Let IT = {p < ¢} be a program over signatutd = {p,q,r}. Although pro-
gramII has nothing to do with the atom we have thaforget,(Il,7) = 0 (i = 1,2, 3), which
seems not intuitive as it loses some information irrelevanivhat we want to forget. However
Forget, (I1,r) =, 1L O

This example also shows that the semantic forgetting doesatisfy “positive persistence”
postulate a3l =, ¢ D p, which is lost in the semantic forgetting resfdtget, (I, ) for: = 1,2, 3.

5.3 Forgetting OperatorsFg and Fy

Wong (2009) developed his forgetting for disjunctive logiograms. Differently from the work
of Zhang and Foo (2006), and Eiter and Wang (2008), Wongigefting is defined based on the
HT-logic. In this sense, his approach probably shares a comogin ground withHT-forgetting.
Wong also defined two forgetting operatétsandF,y, which correspond to two series of program
transformations. See Appendix D for the detailed defingion

The interesting feature of Wong's forgetting is that it gne®s strong equivalence. However,
a major issue with this forgetting is that: on one hand, thgdtiing Fs may cause unnecessary
information loss; on the other hand, the forgettihg may also introduce extra information that
one does not want, as illustrated by the following example.

Example 12 Let us consider the normal logic progrdinconsisting of:
a <z, Y < a,not z, q < notp, p < notq, — D, q.

Then we have:

Fs(I1, {a,p}) =ur {y + z,not 2},

Fw(IL {a,p}) =ur {y ¢ z,notz,  «a,  q«},
Forget, .+ (I1, {a, p}) =ur {y < x,not z, q < notnot q},
Forgety o(I1, {a, p}) =cp {y < z,n0t 2, q < notnot q}.

Sincell 7 {q + notnot q}, which is irrelevant to atoms andp, it seems to us that forgetting
{a, p} from II should not affect this fact. Bus (1L, {a,p}) Fnr {¢ < notnot ¢}. In this sense,
we see thaks has lost some information that we wish to keep. This showstieeoperatoFs does
not satisfy “positive persistence” postulate.

On the other hand, from the fact tHat~,r g butFw(I1, {a, p}) Eur ¢, it appears thaty may
introduce unnecessary information, which indeed confbatsintuition of program weakening via
forgetting, i.e., it does not satisfy the “weakening” pdate. O

As we mentioned in the introduction, the following examptmfirms that an expected result
can not be obtained from either one of the above three famgedipproaches.

Example 13 [Continued from Example 5] For the normal logic progréim
(P2 A(mgDpP)A(PAGD L),
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we have the following:

SForget(II, {p}) = forget, (IL, {p}) = Fs(IL, {p}) = 0,
WrForget(I1, {p}) = Fw(IL {p}) = {¢}-

Here, the expected logic program that represents the sdammation ofII when the auxiliary atom
p is ignored should be—¢ D q. d

6. Concluding Remarks

In this paper two semantic knowledge forgetting approactededHT- andFLP-forgetting respec-
tively, were proposed for logic programs under stable maaelFLP-stable model semantics re-
spectively. These knowledge forgetting results can beucagtby the corresponding logical conse-
guence of forgotten logic programs that are irrelevant tgdtien atoms. It consequently preserves
strong equivalence of logic programs undgr andFLpP-stable model semantics respectively. This
is a major advantage when compared to other existing fimgedppproaches in logic programming.

As a starting point, we investigated the model theoretibalacterization of logic programs un-
derHT- andFLP-stable model semantics, and studied their respectivagtquivalence problems
using classical propositional logic equivalence. Manypgrties of forgetting have been explored,
such as existence of forgetting results, a representdtimorém, and the complexity of some deci-
sion problems related to these forgettings. We also coresidan application of knowledge forget-
ting in conflict solving.

Although we have presented abstract approaches to corgpthinforgetting results and we
showed the underlying difficulties of the computation, iveéuable to study practical algorithms
for different subclasses of logic programs. Another cimgfileg future work is to extend the knowl-
edge forgetting to other nonmonotonic systems, and inqueati first-order logic programs (Ferraris
et al.,, 2011). As we have mentioned in the introduction tbegdtting can be effectively used to
solve some confliction, e.g. the strong and weak forgett#tta(g & Foo, 2006) and the propo-
sitional forgetting (Lang & Marquis, 2010), such an apgdiica of knowledge forgetting deserves
further studying.

As what we concentrate upon in this paper is knowledge ftingein logic programs, which is
based on the notion of strong equivalence, an interesting i8do consider forgetting under the
stable model semantics of logic programs along the work @\etral., 2013). Last but not least,
logic programs under supported model semantics enjoys simikar properties as that of logic
programs undeHT- and FLP-stable models semantics (Truszczynski, 2010), we wilkmtar the
knowledge forgetting for logic programs under the supmbrt®del semantics in another paper.
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Appendix A. Proofs for Section 2
Proposition 1 Let A, B, C, D be set of atoms. We have the following

(i) AN(Au-B) > \/(DU-C) =4 N(AU-BU--C) DV D.
(i) AN(AU-B)>D V(DU-C)Erpr N(AU-BU-=C) DV D.

Proof: (ii) Suppose(X,Y’) is anFLp-model of A(A U =B) D /(D U —C) but not anFLP-model
of A(AU—-BU-=C) >\ D. It follows that the following conditions hold:

(@ X = A(AU-BU-=C), which impliesX = A(AU-B).

(b) Y = A(AU-BU-=C), which impliesY = A(Au-B) A AC, and

() (X,Y) Frrp VD, ie. X £\ D.
The conditions (a) and (b) show th@X,Y) =qp /(DU =C),ie. X =V DorY =\ -C.
Together with the conditions (b) and (c), a contradictiolfofes. O

Appendix B. Proofs for Section 3

Proposition 4 A collection M of x-interpretations isk-expressible iff
(X,Y) € Mimplies(Y,Y) € M. a7)
Actually, if M satisfy condition (17) then the following logic program
IL, = {\ (X, Y)[(X,Y) ¢ Mand(Y,Y) € M}U{NY,Y)|(Y,Y) & M}
capturesM in the sense thatlod, (11, ) = M.

Proof: The direction from left to right follows from (i) of Propo@in 3. We prove the other
direction. LeflL, be the propositional theory consisting of, for evéfyc Y C A,

e M (X,Y)if (X,Y) ¢ Mand(Y,Y) € M, and
e \Y,Y)if (YY) ¢ M.
By Lemma 1,Mod, (II,) = M. O

Lemma 2 Let A, B be two sets of atoms, anli C Y C A. (X,Y) =, AB D VAIff X
ABD>VAandY = ABD>VA.

Proof:. According to (iii) of Proposition 3 and Proposition 2, it isfBcient to show that, for the
casex = HT,

XE(ABo\A it x=AB>\/Aandy = ABD\/ A

(=) Note thatY = AB D> VAandX = (A B)Y implies X | (\/ A)Y. SupposeX [
AB D VA ie BC XandAnNX = (. It follows thatY = A B due toB C Y, and then
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Y = VA ie AnY # (. Thus we haveX | (A B)Y since(AB)Y = AB.By X = (\V A)Y
i.,e. X =V A, we haveX N A # (), a contradiction.
(<) We need only to showX = (A B)Y > (\V A)Y sinceY = AB D> \/ A. Suppose

X E (AB)Y and X [~ (VA)Y. The former impliesB € X C Y, thusX N A # 0§ by
X = AB DV A. The latter impliesX N (ANY) = 0, whichmeansX N A = () sinceX CY,a
contradiction. O

Proposition 5 A setM of x-interpretations igositively x-expressiblei.e., there is a positive logic
programII s.tMod, (II) = M, iff M satisfies the criteria:

(X,Y) e Miff X CY,(X,X) e Mand(Y,Y) € M. (18)

Actually, if M satisfy condition (18) then the following logic program

L = {\ X 5 \/ XX, X) ¢ M}
capturesM in the sense thatlod, (I1,) = M.

Proof: It suffices to prove the case= HT by Proposition 2.

(=) LetII be a positive logic program whoser-models are exact the ones.M. For every
HT-interpretation(X,Y’), by Lemma 2(X,Y) =4 IIiff X C YV, X EITie. (X, X) ur 10,
and(Y,Y) =ur Ili.e. Y = 11 since every rule ofl is positive. The condition (18) follows.

(<) Let N = {X C A|(X, X) € M}. We construct the propositional thedryconsisting of

AXoVX

for everyX € N(= 24\ N).

Firstly we showMod(IT) = A. SupposeX |= ITandX ¢ N. We have thatX € V. It follows
that X j~ ITas/A\ X D \/ X belongs tall. On the other hand, supposé € N and X }~ I1. It
follows that there existX’ € A such thatX = A X' > VX', i.e, X' C X andX N X' = 0,
from which we haveX = X’ thus X € N, a contradiction.

Secondly we showlod,,(IT) = M. Onthe one hand, I€X,Y") =, II. We have tha | II
andY = II by Lemma 2. It followsX,Y € N, which implies(X, X) € M and(Y,Y) € M.
Thus(X,Y) € M by (18). On the other hand, 1€X,Y) € M. In terms of (18), we have
(X,X) e Mand(Y,Y) € M. ThusX € N andY € N, ie. X = IIandY |= II. Thus
(X,Y) Eur II by Lemma 2. O

Proposition 6 A collection M of x-interpretations ifHorn x-expressiblei.e., there is a Horn logic
programII such thatMod, (IT) = M, iff M satisfies, in addition to (10), the following criteria:

(X,)Yye Mand(H,T) e M= (XNH,YNT) e M. (19)

Proof: It suffices to prove the case= HT by Proposition 2.

(=) Supposell is a Horn logic program such thaflod,,;(IT) = M. By Proposition 5,
Modyr(IT) satisfies (18). SupposgX,Y) and (H,T) are twoHT-models ofIl. It follows that
X,Y,H andT are models ofl by Lemma 2. ThusX N H = ITandY N T k II, by which
(XNH,YNT)=IlduetoXNH CYNT.
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(<) Let N andII be the ones defined in the proof of Proposition 5XIfY € N'thenX NY €
N according to (19). It follows that there exists a Horn logiogram (a set of Horn clauses) whose
models are exactly the onesM. As a matter of fact, the Horn prograifi can be constructed from
IT by replacing each\ X D \/ Y with

AXop,... . ANXDp (20)

whereX NY =P and{Y'\ X|X CY'andY’ e N} = {p1,...,px}-
We firstly showll = IT’ by proving

H):(/\X:)\/Y)(/\XD A pi)

1<i<k

wherep; (1 < i < k) are defined in (20). The direction from right to left is trives A X D \/ Y
belongs tdl. Let us consider the other direction. Suppdgé= 11, H is a model ofA X D \/Y
andH (= A\ X D p; forsomei (1 < i < k). We have thatX C H andH NY # (. It follows
that H is some element ofY’ \ X|X C Y’ andY’ € N} and then{p:,...,pr} C H. Itisa
contradiction.

Finally Mod,(IT') = M follows from Mody;(II) = M and Proposition 5. O

Proposition 7 Lety = A(BU—C) D \/(AU—D), whereA, B, C, D are subsets ofl. Then we
haVeA(A) ): TFLP[SD] < THT[SD]-

Proof: Note thatr[—p] = —p A —p’ and e p[—p] = —p’. We have

Turlp] = ¢’ A </\B/\ /\(—|c/\—\c/) 3\/Av \/(ﬁd/\_‘d/)>’

ceC deD
Trele] = ¢ A (/\(B U-CUB'U-C") > \/(AU ﬁD’)) .

SinceA(A) E —p A —p' <> —p/, we have that

A(A) = 1ure] < ¢ A (/\(B u-c)o\/Av\/ ﬁd’> ,

deD
A E rele] € @ A (ABU-C) > \(AU-D)).

It completes the proof. O

Proposition 8 Lety be a formulaoff 4y and X C Y C A. (X,Y) is ax-model ofy iff X UY" is
a model ofA(A) U {7 [¢]}.

Proof. We prove the case = FLP by induction on the structures of Let X C Y C A.

e p=porp= 1. ltistrivial for o = L. On the other hand,X,Y) ¢ piff X = piff
XUY' Ep.
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e » = 1 0@y Whereo € {A, V}. It follows from the inductive assumption.

o v = @1 D . We haverp[p1 D 2] = (¢) D ¥h) A (1 A ¢l D Tre[p2]). Recall that
(X,)Y) Erp o1 D o ff

- Y E (p1 D ¢2) and,
— either (@)X £ o1, or ()Y I 1, 0r (€) (X, Y) [Erip 0.

Note that

— Y E(p1 D) iff Y E @) Dphiff XUY' =) D ¢h, and

—@X o iff XUY' [ o, (0)Y b o iff Y/ e of iff XUY' = o, and (c)
(X,Y) Erp 2 iff X UY' | 7rp[p2] by the inductive assumption.

It follows that<X, Y> ):FLP ©®1 D) ©2 iff X U Y, ’: TFLP[QDI D (,02]

This completes the proof. d

Theorem 4 Two formulasy and ¢ have the same-models (overl 4) iff A(A) U {r[¢]} and
A(A) U {7 [¢]} have the same models (ov&f4/).

Proof: We prove the case = FLP.
(=) M = AGA) U {reeslel}
iff MaUMa = A(A) U {7eeo]}
iff (M4, M) t=rp ¢ by Proposition 8, herél”;, = {plp’ € M 4}
iff (M, M3,) Fee 1 SiNCEY =¢1p
iff Ma4UMy = A(A)U{7ep[¢]} by Proposition 8
iff M = A(A) U {7ee[t]}-
() (X,Y) Fre e
iff XUY’' = A(A) U {7ep|p]} by Proposition 8, her&”’ = {p'|p € Y’}
iff XUY’' = A(A) U {7ep[t]} SinceA(A) U {tep[t]} = A(A) U {mepe] }
iff (X,Y) Eep ¢ by Proposition 8. O

Proposition 9 (i) The problem of deciding if a formula issatisfiable iSNP-complete.
(ii) The problem of deciding if two formulas axeequivalent isco-NRcomplete.

Proof: (i) Membership. If a formulay is FLP-satisfiable then there exists anp-interpretation
(H,T) such that(H,T) =rp . Itis feasible to guess such &np-interpretation and check the
condition(H, T |=e.p ¢. Thus the problem is in NP.

Hardness. It follows from the fact thatp is FLP-satisfiable iff— is satisfiable, which is NP-
hard, by (ii) of Proposition 3. This shows that the problemiiz-hard.

(i) Membership. Ify Z¢ 1 then there existéH, T') such that, either

(a) <H7 T> ):FLP 2 and <H7 T> [#FLP 1/11 or

(b) <H7 T> l#FLP 2 and <H7 T> ':FLP 1/}
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To guess such arR_p-interpretation(H, T") and to check the conditions (a) and (b) are feasible in
polynomial time in the size op ande. Thus the problem in co-NP.
Hardness. We have thatp =¢p |
iff = has noFLP-model
iff = has no model by (ii) of Proposition 3
iff ¢ is valid, which is co-NP-hard. Thus the problem is co-NPdhar O

Appendix C. Proofs for Section 4

Lemma 3 Lety be a formula and” C A. A formulay is aresult ofx-forgettingV” from ¢, iff the
following condition holds:

Mod, (¢)) = Mod,(¢)4v .

Proof: ¢ is a result of-knowledge forgetting” from ¢

iff, for every x-interpretation), M =,  iff there existsM’ =, ¢ s.t. M ~y M’

iff Mod,(v)) = {M is anx-interpretation| IM’ =, ¢ and M ~y M'}

iff Mod, (1) = Mod(¢)tv . O

Lemma4 LetX,Y, H,T andV be subsets ofl.
) X~y HandY ~y TthenX NY ~y HNTand X UY ~y HUT.
(i) If X ~y HandY’ ~y/ T thenH UT’ ~yy X UY.

Proof: (i) Note that(X NY)\ V'
=(X\V)N (Y \V)
=(H\V)Nn(T'\V)duetoX ~y HandY ~y T
=SHNT)\V.
ThusX NY ~y T'NT. We can similarly proveX UY ~y HUT.
(i) Please note that” = {p|[p € Y},V' = {p/|p € V} andT’ = {p'|p € V'}. We have that
(HUT)\ (VUV’).
=(HN\(VOuV)u(T\(Vuv)
(H\V)U(T'\V')sinceHNV'=@andT' NV =0
(X\V)u(Y"\V')sinceH ~y H andT’ ~y/ Y’
(
(

X\N(VUuv)u'\ (Vvuv’))sinceXNV' =0andY' NV =
=(XUuY)\ (Vuv.
It follows that H U T ~yy X UY. O

Theorem 6 (Expressibility theorem) Let ¢ be a formula and/” a set of atoms. There exists a
formula such thatMod, (¢) = Mod,(¢)4v .

Proof: For every(X,Y) € Mod,(¢)tv, there exist§ H,T') =, ¢ such that(H,T) ~y (X,Y),
i.e. X ~y HandY ~y T. By (i) of Proposition 3(7,7T) =, ¢. Thus(Y,Y) € Mod,(¢)+v
due to(Y,Y) ~y (T, T). It follows that the collectiorMod, () satisfies the condition (8), then
there is a formula) such thaMod, (v/) = Mod, () by Proposition 4. O

Lemma5 A formulay is -irrelevant to a sefV” of atoms iff(H,T) =, ¢ implies(X,Y) =, ¢
for every twox-interpretations(X,Y') and (H, T) with (X,Y) ~y (H,T)
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Proof. ¢ is x-irrelevant tol’

iff there exists a formula> mentioning no atoms iy such thatp =, ¢

iff there exists a formula> mentioning no atoms i s.tMod, (¢) = Mod, (1))

iff Mod, () ={(X,Y)|X CY and3(H,T) ~v (X,Y) st(H,T) E, ¢}

iff (H,T) =, pimplies(X,Y) =, ¢ for every twox-interpretations X, Y') and(H, T') such that
(X,)Y) ~y (H,T). O

Proposition 10 Let« and be two formulas and” a set of atoms.

(i) IR.(Forget, (v, V), V).
(i) ¢ has ax-model iffForget, (¢, V') has.
(iii) ) = Forget, (¢, V).
(iv) If ¢ =4 ¢ thenForget, (v, V) |=, Forget, (p, V).
(

(v) Forget, (¢ V ¢, V) =, Forget, (¢, V) V Forget, (¢, V).
(vi) Forget, (¢ A, V) =4 Forget, (1, V) A Forget, (¢, V).

(vii) Forget, (¢ A p, V) =, Forget, (¥, V) A pif IR (p, V).

Proof: (i) It immediately follows from Lemma 5.

(ii) It is evident thatMod, (v)) # 0 iff Mod,(¢);y # (0 by Definition 8.

(iii) It is easy to see thaVlod, (/) € Mod, (1), by Definition 8.

(iv) Let ¢ =, ¢, and(H,T) |=, Forget (¢, V), i.e. (H,T) € Mod, (). In terms of
Definition 8, there exist$H', T") =, ¢ such that H,T) ~y (H',T"). Itimplies that(H', T") .
@ sincey =, . Thus(H,T) € Mod,(p)v, i.e. (H,T) =, Forget, (p, V).

(V) <H7 T> ':* Forget* (1/} v 1) V)
iff (H,T) € Mod, (¢ V @)1y
iff 3(H',T") =« ¥ V ¢ such that H, T) ~y (H',T")
iff 3(H',T") such that H,T) ~y (H',T") and, eithed H', T") =, ¢ or (H',T") = ¢
iff (H,T) € Mod,(¢)+y or (H,T) € Mod, ()31
iff (H,T) |=, Forget,(¢,V)or(H,T) |=, Forget,(,V)
iff (H,T) =, Forget, (v, V) V Forget, (¢, V).

(vi) (H.T) |, Forget, (v A ¢, V)
= (H,T) € Mod,(¢) A ¢)+v
= (H',T") = v A psuchthat H,T) ~y (H',T")
= 3(H',T") such that{H,T) ~y (H',T'), (H',T') =« v and(H',T") =, ¢
= <H, T> S Mod*(”l/J)TV and(H, T> S Mod*((p)ﬂ/
= (H,T) =, Forget, (v, V) and(H,T) |=, Forget, (p,V)
= (H,T) =, Forget, (¢, V) A Forget, (¢, V).

(vii) The direction from left to right follows from (vi) andhie factiR(p, V'), i.e. Forget, (¢, V') =,
. Let us consider the other direction.

(H,T) E« Forget*(¢7 VA
= (H,T) =, Forget, (¢, V) and(H,T) =, ¢
= I(H',T") =, ¢ such thal H,T) ~y (H',T'), and(H,T) =, ¢
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= 3(H,T) ~y (H',T") such that H', T") =« ¥ A p by IR(¢, V') and Lemma 5
= <H, T> € Mod*(”l/J A\ (P)TV
= (H,T) =, Forget, (¥ A p, V). O

Theorem 8 (Horn expressibility) LetII be a Horn logic program and” C A. There is a Horn
logic programII’ such thatForget, (11, V') =, IT'.

Proof: In terms of Proposition 2, it suffices to prove fer= HT. Let M = Mody:(IT)y. By
Proposition 6, it is sufficient to show thatl satisfies conditions (5) and (12).

We first prove thatM satisfies (5). For eachT-interpretation(X,Y) € M, we have that
X C Y, and there existéH, T') € Mod,(II) such that X, Y") ~y (H,T). Note thatll is positive,
which shows thatH, H) and (T, T) areHT-models oflI by Lemma 2. ThugX, X) € M and
(YY) € MduetoX ~y H andT ~y Y. Onthe other hand, suppo&g, X) € M, (YY) € M
andX C Y. There exist twaiT-models(H’, T') and(H”, T") of Il such that H', T") ~y (X, X)
and(H",T") ~y (Y,Y). By Lemma 2, we havél’ =11, T’ = 11, H” = T andT” k= 1I. Since
models of Horn theories are closed under set intersectidine(h 1951), H' N H” E 1I. By
Lemma 2 again, we havdd’ N H”,T") =y 1. By Lemma 4,H' N H” ~y X NY (= X). Thus
(HNnH",T") ~y (X,Y). It follows (X,Y) € M.

Now we show thatM satisfies (12). SupposeX,Y) and (H,T) are twoHT-interpretations
in M. It follows that there are tweiT-models(X’,Y’) and(H’, T") of II such that X', Y’) ~y
(X,Y)and(H',T") ~y (H,T). Sincell is Horn, we have thatd’ N X', 7" NY") Eur II by
Proposition 6. By Lemma 4, we havé’ N X' ~y HN X andY' NT" ~y Y NT. Itimplies
(HNX' T'NY')~y (XNHYNT), thus(XNHYNT) € M. O

Proposition 11 Let IT be a disjunctive logic programy C A. We have thaForget, (I, V') is
expressible in disjunctive logic programs if and only if,

<H1,T1> ’:* H, (TQ,T2> ):* 1I andT1 CTh = E|<H3,T3> ):* IT such that<H3,T3> ~y (Hl,T2>.

Proof: By Proposition 2, it suffices to prove = HT. LetII’ =, Forget,;(II, V). The direction
from left to right is obvious. We show the other direction.

Suppose thakl’ is not expressible in disjunctive logic programs. Thers®xiX,Y) =y 1T,
Y CY'and(Y',Y’) =y I such that( X, Y') &y IT'. It follows that, for each Hy1, T1) Eur 1T
and (Ty, Ty) Eur I such that(Hy,Ty) ~v (X,Y), Ty ~y Y/ andT; C Tb, there exists no
<H3,T3> ’:HT IT such that(Hg,T3> ~y (Hl,T2>, viz. (Hg,T3> ~y <X, Y/> by <X, Y,> ~Yy
(Hy,T»), a contradiction. O

Proposition 12 LetII be a normal logic program}’ C A. ThenForget, (II, V') is expressible in
normal logic programs if and only if, in addition to conditid21), the following condition holds,

(H1,T1) s 10, (H2, Ty) =i lLand Ty ~y Ty
= E|<H3,T3> ):* II such thatH3 ~y Hy N Hy and (Tg ~y 11 or1s ~y Tg). (21)
Proof: By Proposition 2, it suffices to prove = HT. LetII’ =, Forget,.(II, V). The direction
from left to right is easy. We consider the other directionvimat follows.

In terms of Proposition 11 and Corollary 3, it is sufficienstmw that, for eackiX,Y) =y I
and (X")Y) =4 I, (XN X')Y) =4 I according to Corollary 3. Suppose that,Y) and
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(X',Y) are twoHT-models ofll". There are twadT-models(Hy,T}) and (H,,T») of II such
that (X,Y) ~y (Hy,T1) and (X', Y) ~y (Hy, Tb). It follows thatT; ~y T and, by condi-
tion (21), there exists anT-model (Hs, T5) of II satisfying eithef Hs, T5) ~v (Hy N Ho,T7) or
(Hs,T3) ~y (HyN He,Tb), which shows(Hs, T3) ~y (X N X', Y), hence(X N X' Y) Eur
IT. O

Theorem 10 (Representation theorem)Let ) andy be two formulas and” a set of atoms. Then
the following statements are equivalent:

() ¢ =, Forget, (v, V).

(i) o= {¢' | ¥ ¢ andIR.(¢',V)}.

(iii) Postulates W), (PP), (NP) and (R) hold.

Proof: LetX, = {¢ | ¥ = £andIR, (&, V)}. Itis evident thatR, (X,, V).

The equivalence between (i) and (ii) follows from Coroll&y (ii) obviously implies (iii). It
suffices to show (iiiy=- (ii).

By Positive Persistence, we hayel=, ¢ for each¢ € 3, from which followsMod, (¢) C
Mod, (X,). On the other hand, by\\) ¢ =, ¢ and (R) IR,(¢, V), it follows ¢ € X,. Thus
Mod, (X,) € Mod,(p). Thusy =, %,. O

Proposition 13 Let ¢, ¢’, ¢ be formulas and/ C A such thaty =, Forget, (¢, V) and ¢’
Forget(¢y, V). Then

(i) p=¢.
(i) ¢ .

Proof: (1) T = ¢
iff (T, T) =, ¢ by (i) of Proposition 3
iff (T',T) =, Forget, (¢, V') sincep =, Forget, (¢, V)
iff 3(Y,Y) =« ¢ such thatT, T) ~y (Y,Y) by Definition 8
iff Y = ¢ such thatl’ ~y Y by (i) of Proposition 3
iff 7' |= Forget(¢, V') by Corollary 5
iff T = ¢’ sincey’ = Forget(y, V).
(i) (H,T) . ¢’
= T = ¢ by (i) of Proposition 3
= T E Forget(—, V) sincey’ = Forget(—), V')
= JY = —¢ such thaty” ~y T by Corollary 5
= 3(H \ V,Y) &, ¢ such thay” ~y T by (ii) of Proposition 3
= (H,T) =, Forget, (=, V) due to(H \ V,Y) ~y (H,T) and Definition 8
= (H,T) =, ¢ due toForget, (-, V') =, . O

Proposition 14 LetIT andII’ be two Horn logic programs, anti a set of atoms such that’ =
Forget(II, V). ThenIl' =, Forget, (I, V).
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Proof. By Proposition 2, it suffices to show= HT.
(=) H T Ear IU
= H' =1I"andT” = II' by Lemma 2
= 3H,T suchthatd =11, T =11, H ~y H' andT ~y T’ by IT" = Forget (11, V')
= 3JH,Tsuchthati NT =1, T =11, HNT ~y H andT ~y T’
= 3H, T such that H N T, T) = Land(H NT,T) ~y (H',T")
= (H',T") Eur Forget,; (I, V).
(<) (H',T") Fur Forget,(I1,V)
= 3(H,T) Eur Usuchthat H', T") ~y (H,T)
= JH C T'suchthatd =11, T =T and(H',T") ~v (H,T) by Lemma 2
= H' |= Forget(IL, V) andT” |= Forget(II,V)
= H' =1I" andT” = IT’ due toll’ = Forget(IL, V)
= (H',T") Eur IT.

Proposition 15 Let andy be two formulas and” a set of atoms.
(i) ¢ = Forget(y, V) iff == =, Forget, (-, V).
(i) Forget(y, V') = Forget(y, V) iff Forget, (——¢, V') =, Forget, (==, V).

Proof: (i) (=) (H,T) s 7
iff T = ——y,i.e.T = ¢ by (ii) of Proposition 3
iff T |= Forget(v), V') sincep = Forget(), V)
iff 3Y = ¢ i.e.Y = == such thaty” ~y T by Corollary 5
iff (H\V,Y)E,—-—H\V CT\V=Y\V)by (i) of Proposition 3
iff (H,T') =, Forget,(——), V') by Definition 8.
(&) TEpieTE-p
iff (H,T) =, —— by (ii) of Proposition 3
iff (H,T') = Forget,(——, V) for H C T since——p =, Forget, (-, V)
iff 3(X,Y) . - such that H,T) ~y (X,Y’) by Definition 8
iff Y = ——¢ such thaty” ~y T by (ii) or Proposition 3
iff T |= Forget(——1), V') by Corollary 5.
(i) (=) (H,T) |=. Forget,(~—p,V)
iff 3(X,Y) . =—¢ such that X,Y) ~y (H,T) by Definition 8
iff 3Y = ——pi.e. Y = ¢ suchthaty” ~y T by (ii) of Proposition 3
iff 7' |= Forget(y, V') by Corollary 5
iff 7' |= Forget(¢), V') sinceForget(p, V') = Forget(¢, V)
iff 3Y’ =14 i.e. Y’ = == such thaty” ~y T by Definition 8
iff 3(X \ V,Y") |, = by (ii) of Proposition 3 \V CY\V =Y"\V)
iff (H,T) =, Forget, (-, V) by (H,T) ~y (X \ V,Y’) and Definition 8.
(<) T E Forget(p, V)
iff Y = pi.e. Y | ——¢ such thaty” ~y T by Corollary 5
iff 3(X,Y) = ——p such thay” ~y T by (ii) of Proposition 3
iff (X \V,T) |= Forget,(—m—¢, V) (X \ V,T) ~y (X,Y) and by Definition 8
iff (X \V,T) =, Forget,(——, V') sinceForget, (-—p, V') =, Forget, (-1, V)
iff 3(X',Y") =, - such that X \ V,T) ~y (X', Y’) by Definition 8
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iff 3Y’ = - i.e. Y’ =+ such thafl’ ~y Y’ by (ii) of Proposition 3
iff T = Forget(¢, V') by Corollary 5. O

Theorem 12 (-forgetting vs propositional forgetting) Lett and ¢ be two formulas of 4 and
V C A. Then

¢ =, Forget, (1, V) iff A(A) = T[] <> Forget(A(A) U {r 0]}, V U V).

Proof: (=) Let M = M4 U M, be a model ofA(A).
M = A(A) U {7}
iff (M, M},) =« ¢ by Proposition 8
iff (M4, M%) f=. Forget, (¢, V) sincep =, Forget, (¢, V)
iff 3(H,T) f=, ¢ suchthatlH, T) ~y (M4, M) by Definition 8
iff 3(H,T) f=, ¢ such thatd ~y M4 andT ~y M7,
iff IHUT' E A(A) U {7 [¢]} andH ~y M4 andT” ~y M 4 by Proposition 8
iff IHUT = A(A) U {n ]} andH UT" ~yyyr M4 U Mg by Lemma 4
iff M4 UMy = Forget(A(A) U{r[¢]},V UV’) by Definition 8
iff M | Forget(A(A) U {r[v]}, V UV’).
(<:) <X>Y> ’:* ¥
iff XUY’' = A(A) U {r[¢]} by Proposition 8
iff XUY’' = A(A) UForget(A(A) U {r[¢]}, VUV’
iff IM = A(A) U {7[¢]} such thatV ~y 7 X UY'
iff 3(M4, M) =« o such thatM 4 U M, ~y X UY by Proposition 8
iff (X,Y) =, Forget, (¢, V) due to(X,Y) ~y (M4, M7,) by Definition 8. O

Proposition 16 Letvy and¢ be two formulas of 4 and V" a set of atoms. Thefforget, (v, V') =,
Forget, (, V) iff the following condition holds:

Forget ({7 [1)]} UA(A),V U V') = Forget({r[p]} UA(A), VU V’).

Proof: (=) We showForget({.[¢)] U A(A),V U V') = Forget({r[p] UA(A),V UV’'). The
other side can be similarly proved.
M = Forget({r[¢)]} UA(A),V U V")
= IN C AU A’ such thatV ~y s M andN = {7[1)]} U A(A)
= 3(X,Y) . v with N = X U Y’ by Proposition 8
= (X,Y) . Forget, (¢, V') by (iii) of Proposition 10
= (X,Y) =, Forget, (¢, V') asForget, (1, V') =, Forget, (¢, V)
= 3(H,T) =, p such that H,T") ~y (X,Y) by Definition 8
= HUT' = 7.]p] U A(A) by Proposition 8
= X UY' E Forget({n[¢] UA(A), VUV )asHUT ~yuy X UY!
= M |= Forget({7[p]} UA(A),VUV') by M ~yuyr X UY'(= N).
(<) We showForget, (¢, V) =, Forget, (¢, V). The other side is similar.
(H,T) =« Forget, (v, V)
= 3(X,Y) =« ¢ such that H,T) ~y (X,Y)) by Definition 8
= X UY' E {n¢]} UA(A) by Proposition 8
= X UY' | Forget({n[¢]} UA(A),V UTV’)
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= X UY' E Forget({m[¢]} UA(A),V U V)

= JH, UT] = {m[¢]} U A(A) such thatH; UT| ~yuyr X UY'

= (H1,T1) =+ ¢ by Proposition 8

= (X.,Y) |, Forget, (¢, V) as(X,Y) ~y (Hy,T1) by Definition 8

= (H,T) k=, Forget, (¢, V) as(X,Y) ~y (H,T). O

Theorem 14 Let+y andy be two formulas and” a set of atoms.

(i) The problem of deciding if® =, Forget, (¢, V') is co-NRcomplete.

(i) The problem of deciding #orget, (», V) =, Forget, (¢, V) is I} -complete.
(iii) The problem of deciding i> =, Forget, (¢, V) is I1{’-complete.

Proof: (i) Membership. Recall thap =, Forget, (v, V') by (iii) of Proposition 10. We have
W #, Forget, (v, V)

iff Forget, (¢, V) Fx ¥

iff 3(X,Y") =, Forget, (¢, V) and(X,Y) &, ¢

iff 3(H,T) E, v suchthat H,T) ~y (X,Y) and(X,Y) (£, 9.

Since both guessingd, T'), (X, YY) and checking the-satisfiability can be done in polynomial
time in the size of) andV'. Thus the complement of #, Forget, (¢, V), i.e.v =, Forget, (¢, V),
is in co-NP.

The hardness follows from the fact that, by (i) of Propositid, ——) =, Forget, (—=—, V) iff
¥ = Forget(¢, V'), which is co-NP-complete (cf., see Lang et al., 2003, Projp. 1

(i) Membership. IfForget, (p, V') #, Forget, (¢, V') then there exists &interpretation( H, T')
such that either

(@) (H,T) = Forget, (o, V) and(H, T)) [~ Forget, (¢, V), or
(b) <H7 T> l#* Forget*((pv V) and (Hv T> ):* Forget*(T/}, V)

On the one hand, to guess<anterpretation(H, T is feasible by a nondeterministic Turing ma-
chine. On the other hand, checking( i, T") |=, ¢ is feasible by a deterministic Turing machine;
and (H,T) =, Forget, (o, V) iff there exists(X,Y) =, ¢ such that(X,Y) ~y (H,T). Thus
checking the conditions (a) and (b) can be done in polynotimied in the size of) andy by calling
a nondeterministic Turing machine. Thus the problem Eh

Note that, by (ii) of Proposition 1%,orget, (——p, V') =, Forget, (——), V) iff Forget(o, V) =
Forget(v, V'), which is II¥’-complete (cf., see Lang et al., 2003, Prop. 24). Thus thdriess
follows.

(iii) Membership. Note thap #, Forget, (¢, V) iff there is ax-interpretation(H, T') such that

o (HT) =, pand(H,T) f~, Forget, (¢,V), or
o (H,T) W, pand(H,T) =, Forget, (¢, V).

Similar to the case of (i), the guessing and checking arelprmial time in the size op, ¢ and
V by calling a nondeterministic Turing machine. Thus the pobis inI1Z .

Note thaty =, Forget, (1, V) iff ¢ =, Forget,(p, V) andForget, (¢, V) =, Forget, (v, V),
the latter isIT} -hard by (ii). Then the hardness follows. O
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Proposition 17 Let and be two formulas and” a set of atoms.
(i) The problem of deciding whether =, Forget, (i, V) is I} -complete.
(i) The problem of deciding wheth&orget, (v, V') =, ¢ is co-NRcomplete.

Proof: (i) Membership. Recall that (=, Forget, (¢, V) iff there exists ax-model (H,T') of
such that(H,T) t~ Forget,(p,V). As (H,T) F~ Forget, (¢, V) iff (X,Y) £ ¢ for every*-
interpretation(X,Y") such that(X,Y) ~y (H,T). Such(H,T) can be guessed in polynomial
time in the size ofp, ¢ andV. Checking(H,T) (~ Forget,(p, V') is possible in polynomial time
in the size ofp, ¢ andV by calling a nondeterministic Turing machine. Thus theioagproblem
is in I15.

Hardness. It follows from the following fact:
T s Forget*(—ﬁgo, V)
iff T =, Forget,(——p,V)
iff T = Forget(p, V) by (i) of Proposition 15¢(—-T =, T)
iff the QBF YV 3V is valid, which isI1{’-complete (Papadimitriou, 1994).

(i) Membership. Note that
FOfget*(¢a V) l#* ¥
iff 3(H,T) =, Forget, (¢, V) such that H,T') i~ ¢
iff 3(X,Y) . ¢ such that X, Y) ~y (H,T) and(H,T) }~ .
Since the guessing and checking are both polynomial in #eedsi), o andV/, the original problem
is in co-NP.

Hardness follows from the fact that
Forget, (v, V) =y L
iff ¢ =, L by (ii) of Proposition 10
iff ¢» has nox-model, which is co-NP-complete by Proposition 9. O

Appendix D. Forgetting Operators Fy and Fg

Wong proposed six postulates and argued that the postidatesd to respected by all forgetting
operators in disjunctive logic programs under strong esjaince:

(F-1) IfII =y X thenF(IL, a) =y F(2, a);

(F-2) If a does not appear iA, thenF({r} UA,a) =4 F({r},a) UA;
(F-3) F(II, a) does not contain any atoms notlih

(F-4) If F(II,a) =nr r thenF ({s},a) [=ur  for somes € Cn(II);

(F-5) If F(II,a) Eur (A < B,not C), thenll =1 (A < B, not C,not a);
(F-6) F(F(IL,a),b) =ur F(F(ILb),a)

whereF is a forgetting operatof], > andA are disjunctive logic programs,andb are atomsy is
a disjunctive rule, and

Cn(II) ={r| r is a disjunctive rule such that = » andvar(r) C var(I)}.
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wherevar(«) is the set of atoms occurring in
Accordingly, he proposed two forgetting operatbesandFyy: the result of forgetting an atom
a from a disjunctive logic prograri is defined by the below procedure:

(1) LetIl; = Cn(II).

(2) FormII;, remove rules of the formMA < B, a,not C), replace each rule of the foritd U
{a} < B,not C,not a) with (A < B, not C,not a). Let the resulting logic program H&,.

(3) Replace or remove each rule Iy, of the form (A «+ B,notC,nota) or (AU {a} <
B, not C') according to the following table:
‘ A<« B,notC,nota ‘ AU{a} + B,notC
S | (remove) (remove)
W | A« B,notC A<+ B,notC

Let I3 be the resulting logic program.

The logic progranilIs is the result of forgetting from II.
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