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Abstract

This paper proposes the formalization and implementation of a novel class of con-
straints aimed at modeling problems related to placement of multi-body systems in the
3-dimensional space. Each multi-body is a system composed of body elements, connected
by joint relationships and constrained by geometric properties. The emphasis of this in-
vestigation is the use of multi-body systems to model native conformations of protein
structures—where each body represents an entity of the protein (e.g., an amino acid, a
small peptide) and the geometric constraints are related to the spatial properties of the
composing atoms. The paper explores the use of the proposed class of constraints to support
a variety of different structural analysis of proteins, such as loop modeling and structure
prediction.

The declarative nature of a constraint-based encoding provides elaboration tolerance
and the ability to make use of any additional knowledge in the analysis studies. The filtering
capabilities of the proposed constraints also allow to control the number of representative
solutions that are withdrawn from the conformational space of the protein, by means of
criteria driven by uniform distribution sampling principles. In this scenario it is possible to
select the desired degree of precision and/or number of solutions. The filtering component
automatically excludes configurations that violate the spatial and geometric properties of
the composing multi-body system. The paper illustrates the implementation of a constraint
solver based on the multi-body perspective and its empirical evaluation on protein structure
analysis problems.

1. Introduction

Constraint Programming (CP) is a declarative programming methodology that has gained
a predominant role in addressing large scale combinatorial and optimization problems. As
a paradigm, CP provides the tools necessary to guide the modeling and resolution of search
problems—in particular, it offers declarative problem modeling (in terms of variables and
constraints), the ability to rapidly propagate the effects of search decisions, and flexible
and efficient procedures to explore the search space of possible solutions. The field of CP
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has its roots on the seminal work by Sutherland (1963) in the Sketchpad system, and the
successive efforts in systems like CONSTRAINTS (Sussmann & Steele, 1980) and ThingLab
(Borning, 1981). Over the years, CP has become a paradigm of choice to address hard search
problems, drawing and integrating ideas from diverse domains, like Artificial Intelligence
and Operations Research (Rossi, van Beek, & Walsh, 2006). The declarative nature of
CP enables fast and natural modeling of problems, facilitating not only development, but
the rapid exploration of different models and resolution techniques (e.g., modeling choices,
search heuristics).

In recent years, several research groups have started appreciating the potential of con-
straint programming within the realm of Bioinformatics. The field of Bioinformatics presents
a number of open research problems that are grounded in critical exploration of combina-
torial search space, highly suitable to be manipulated through constraint-based search.
Constraint methodologies have been applied to analyze DNA sequences for instance, to
locate Cis-regulatory elements (Guns, Sun, Marchal, & Nijssen, 2010), to DNA restriction
maps construction (Yap & Chuan, 1993), and to pair-wise and multiple sequence align-
ment (Yang, 1998; Yap, 2001; Tsai, Huang, Yu, & Lu, 2004). Constraint methodologies
have been applied to biological networks (Corblin, Trilling, & Fanchon, 2005; Larhlimi &
Bockmayr, 2009; Ray, Soh, & Inoue, 2010; Gay, Fages, Martinez, & Soliman, 2011; Gebser,
Schaub, Thiele, & Veber, 2011) and to other biological inference problems, such as Haplo-
type inference (Graca, Marques-Silva, Lynce, & Oliveira, 2011; Erdem & Ture, 2008), and
phylogenetic inference (Erdem, 2011).

A particular area of Bioinformatics that has witnessed an extensive use of CP techniques
is the domain of structural biology—i.e., the branch of molecular biology and biochemistry
that deals with the molecular structure of nucleic acids and proteins, and how the structure
affects behavior and functions. Constraint Programming has progressively gained a pivotal
role in providing effective ways to explore the space of conformations of macromolecules,
to address problems like secondary and tertiary structure prediction, flexibility, motif dis-
covery, docking (Backofen, Will, & Bornberg-Bauer, 1999; Krippahl & Barahona, 2002;
Thebault, de Givry, Schiex, & Gaspin, 2005; Dal Palù, Dovier, & Pontelli, 2007; Mann
& Dal Palù, 2010; Shih & Hwang, 2011; Krippahl & Barahona, 2005; Dal Palù, Spyrakis,
& Cozzini, 2012b; Chelvanayagam, Knecht, Jenny, Benner, & Gonnet, 1998; Yue & Dill,
2000). Two comprehensive surveys on the use of constraint-based methods in structural
Bioinformatics have been recently proposed (Dal Palù, Dovier, Fogolari, & Pontelli, 2012a;
Barahona & Krippahl, 2008).

Our focus in this work is on the use of constraint-based technology to support structural
studies of proteins. Proteins are macromolecules of fundamental importance in the way they
regulate vital functions in all biological processes. Their structural properties are critical in
determining the biological functions of proteins (Skolnick, Fetrow, & Kolinski, 2000; Baker
& Sali, 2001) and in investigating protein-protein interactions, which are central to virtu-
ally all cellular processes (Alberts, Johnson, Lewis, Raff, Roberts, & Walter, 2007). We
refer to the Protein Structure Prediction (PSP) problem as the problem of determining the
tertiary structure of a protein from knowledge of its primary structure and/or from knowl-
edge of other structures (e.g., secondary structure components, templates from homologous
proteins). The PSP problem is also often broken down to specialized classes of problems
related to specific aspects of the tertiary structure of a protein, such as side-chain geometry
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prediction (Dunbrack, 2002), loop modeling prediction (Go & Scheraga, 1970; Xiang, Soto,
& Honig, 2002; Rufino, Donate, Canard, & Blundell, 1997; Soto, Fasnacht, Zhu, Forrest, &
Honig, 2008), and protein flexibility investigation (Bennett & Huber, 1984).

All these classes of problems share common roots—the need to track the possible con-
formations of chains of amino acids. The variations of the problem relate to factors like the
length of the chain being considered (from short peptides in the case of loop modeling to
entire proteins in the general PSP case) and the diverse criteria employed in the selection
of the solutions, as, for instance, the lowest basin of the effective energy surface, composed
by the intra-molecular energy of the protein plus the solvation free energy (Karplus &
Shakhnovich, 1992; Lazaridis, Archontis, & Karplus, 1995).

Modeling the variability of a protein chain involves many degrees of freedom which are
needed to represent different protein conformations. Tracking this variability requires the
exploration of a vast conformational space. Model simplifications can be adopted to reduce
such computational cost, for instance backbone-only models represent only the backbone of
proteins, the side-chain representation could be simplified to a single central point (centroid)
describing its center of mass, or one can adopt approximated representation of the space
though lattice models.

Nevertheless, even under strong simplifications, the search space remains intractable
and prevents the use of brute-force search methods in the space of possible conformations
(Crescenzi, Goldman, Papadimitriou, Piccolboni, & Yannakakis, 1998).

Constraint programming methodologies have found natural use in addressing PSP and
related problems—where structural and chemical properties have been modeled in terms
of constraints over spatial positions of atoms, transforming the search of conformations
into a constraint satisfaction/optimization problem. The proposed approaches range from
pure ab initio methods (Backofen et al., 1999; Dal Palù et al., 2007) to methods based on
NMR data (Krippahl & Barahona, 1999) to methods based on fragments assembly (Dal
Palù, Dovier, Fogolari, & Pontelli, 2010). In spite of all these efforts, the design of effective
approaches to filter the space of conformations and lead to a feasible search remains a
challenging and open problem.

In this work we present a constraint solver targeted at modeling a general class of protein
structure studies. In particular our solution is suitable to address protein structure analysis
study, requiring the generation of a set of unbiased sampled diverse conformations which
satisfy certain given restraints. One of the unique features of the solution presented in this
work is its capability to generate a uniformly distributed sampling of target protein regions
among a given portion of Cartesian space and with selected granularity—accounting both
for spatial and rotational properties.

We abstract the problem as a general multi-body system, where each composing body is
constrained by means of geometric properties and it is related to other bodies through joint
relationships. Each body can represent an entity in the protein, such as an individual amino
acid or a small peptide (e.g., a protein fragment). Bodies relate to the spatial positions and
organization of individual atoms composing it.

The view of the exploration of protein structures as multi-body systems suggests a num-
ber of different constraints, that can be used to model different classes of structural studies
and applied to filter infeasible (or unlikely) conformations. We propose an investigation of
several classes of constraints, in terms of both their theoretical properties and practical use
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for filtering. Particular emphasis is given to the Joined-Multibody (JM) constraint, whose
satisfaction we prove to be NP-complete. Realistic protein models require the assembly of
hundreds of different body versions, making the problem intractable. We study an efficient
approximated propagator, called JM filtering (JMf), that allows us to efficiently compute
classes of solutions, partitioned by structural similarity and controlled tolerance for error.
This perspective is novel and holds strong potential. The structural problems we are inves-
tigating are computationally intractable; the use of global constraints specifically designed
to meet their needs enables a more effective exploration of the search space and a greater
potential for effective approximations.

The multi-body model provides an interesting perspective in exploring the space of
conformations—while the actual search operates on discrete sets of alternatives (e.g., sets of
fragments), the filtering process avails of reasoning processes that operates with continuous
domain; this allows the propagation and filtering to be effective.

The proposed multi-body constraints and filtering techniques constitute the core of the
resolution engine of FIASCO (Fragment-based Interactive Assembly for protein Structure
prediction with Constraints), an efficient C++-based constraint solver. We demonstrate
the flexibility and efficiency of FIASCO by using its engine to model and solve a class
of problems derived from loop modeling instances. Throughout the paper we show the
ability of FIASCO of providing a uniform and efficient modeling platform for studying
different structural properties (that have been, so far, addressed only using significantly
distinct methods and tools). The declarative nature of constraint-based methods supports
a level of elaboration tolerance that is not offered by other frameworks for protein structure
prediction, facilitating the integration of additional knowledge in guiding the studies (e.g.,
availability of information about secondary structure elements).

The rest of the paper is organized as follows. In Section 2, we provide a high-level
background on the biological and chemical properties of proteins and review the most com-
monly used approaches to address structural studies. In Section 3, we develop the constraint
framework for dealing with fragments and multi-body structures. Section 4 describes the
implementation of the constraints and their propagation schemes in the FIASCO system.
In Section 5 we report the experimental results from using FIASCO on a collection of
benchmarks on loop modeling. Section 6 provides some concluding remarks.

A preliminary version of the research pursued in this paper was presented (Campeotto,
Dal Palù, Dovier, Fioretto, & Pontelli, 2012). While the work of Campeotto et al. focused
on one new class of constraints targeting the problem of loop closure, the work presented
in this paper provides a comprehensive constraint system, focused on modeling structural
protein properties and investigating different types of problems (e.g., structure prediction,
studies of flexibility). The present manuscript includes also a more precise and detailed
formalization and a more extensive experimentation and comparison.

2. Background, General Context, And Related Work

In this section we will briefly review some basic Biology notions, introduce the problems we
are tackling in this paper and refer to a selection of the related literature.
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Figure 1: A schematic sequence of two amino acids showing the amino acid backbone and
their side chains. The arrow from C ′ to N denotes the peptidic bond.

2.1 General Background

A protein is a molecule made of smaller building blocks, called amino acids. One amino acid
can be connected to another one by a peptidic bond. Several amino acids can be pairwise
connected into a linear chain that forms the whole protein. The backbone of a protein, as
illustrated in Figure 1, is formed by a sequence of N–Cα–C ′ atoms contained in each amino
acid. The backbone is rather flexible and it allows a large degree of freedom to the protein.

Each amino acid is characterized by a variable group of atoms that influences the specific
physical and chemical properties. This group, named side chain, ranges from 1 to 18 atoms
and connects to the Cα atom of each amino acid. There are 20 kinds of amino acids found
in common eukaryotic organisms.

Proteins can be made of 10 up to 1, 000 amino acids, while an average globular protein
is about 300 amino acids long. Each amino acid contains 7–24 atoms, therefore the number
of atoms and arrangements in the space can grow very easily beyond any computational
power. Since the beginning of protein simulation studies, different algorithms for explor-
ing the conformations have been devised, such as molecular dynamics, local search, Monte
Carlo, genetic algorithms, constraint approaches, as well as different geometric representa-
tions (Neumaier, 1997).

In the literature, several geometric models for proteins have been proposed. One choice
that influences the quality and the complexity of computational approaches is the number
of points that describe a single amino acid.

The simplest representation is the one where each amino acid is represented by one
point, typically the Cα atom, given its robust geometric property: the distance between the
Cα atoms of two consecutive amino acids is preserved with a low variance (roughly 3.81Å).
Usually, volumetric constraints are enforced over those points, in order to simulate the
average occupancy of each amino acid. This representation can be visualized as a chain of
beads that can be moved in the space.

More refined representation models store some (or all) the points of the backbone, plus
a centroid of mass (CG) that represents the whole side chain that connects to the Cα atom.
In these models, each amino acid is described by different Cα–CG distances and CG volumes.
The centroid is an approximation of the side-chain flexibility and allows for more refined
energetic models, while the number of points to be taken care of is still low. In this paper
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Figure 2: The native structure of “intact influenza virus M1 protein” (indexed as 1EA3
in the PDB) modeled as full atom, with the 5@ model, and with the simple Cα–Cα model
(from left to right). The secondary structures (α-helices) are emphasized.

Figure 3: Amino acid concatenation in the 5@ model

we use a particular case of these simplified models, the “5@” model, described precisely
below. This is a particular instance of coarse-grained protein models (Clementi, 2008;
Shehu, 2010). At the end of the spectrum, each atom in the amino acid is represented by
one point. This representation is the most accurate, and at the same time allows for the
most accurate energetic considerations. The drawback is that the computational demand
for handling backbone and side-chain flexibility increases significantly.

In Figure 2 we report three representations for the same protein.
In this paper we select the intermediate representation for amino acids where the atoms

N,Cα, C
′ of the backbone and the centroid of the side chain (CG) are accounted for. We

also include an oxygen (O) atom attached to the C ′ atom, because this atom together with
the C ′ and N identifies a triangle that is chemically stable along the backbone and it is used
for the assembly of amino acids (see below for a complete formalization). The position of
the two H atoms in the backbone can be deduced by the position the other atoms and we
will not deal with them explicitly. In conclusion, we deal with 5 atomic elements per amino
acid: the 4 atoms NCαC

′O and the centroid CG. We briefly refer to this representation as to
the “5@” model. Figure 3 illustrates how these atoms are involved in the concatenation of
two consecutive amino acids. Inter-atomic distances between consecutive atoms are fixed—
due to their chemical bonds; thus, the differences between these structures are identified
by the differences between the angles involved. It is common to find substructures of a
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protein where consecutive amino acids are arranged according to repeated and characteristic
patterns. This property is found in almost every protein; we refer to these typical patterns
as secondary structure elements. The most common examples are α-helices and β-sheets
(see Figure 2).

2.2 Context Of The Proposed Work

In this paper we present a tool for assembling and reasoning about amino acids in the
space. As in other similar approaches (e.g, Simons, Kooperberg, Huang, & Baker, 1997),
the system relies on a set of admissible elementary shapes (or fragments) that represents
the spatial dictionary of arrangements for every part of a protein.

Each element of the dictionary is general enough to describe the specific atomic structure
of either a single amino acid or a longer sequence (even hundreds of amino acids long). For
each amino acid sequence, several alternative arrangements are expected to populate the
database, so that to offer various hypothesis about the local shape of the sequence. The
protein is partitioned into contiguous fragments that can be arranged according to one of
the possible shapes recorded in the database.

A sequence of amino acids is free to rotate its bonds in the space (typically two degrees
of freedom along the backbone and several others along the side chain); however, due to
chemical properties and physical occupancy that are specific to the types of amino acids
involved and the surrounding environment, some arrangements are impossible and/or un-
likely. The core assumption in assembling approaches is to rely on a statistical database of
arrangements to describe local and feasible behavior, in order to direct the search to candi-
dates that have high probability and are energetically favorable. The presence of multiple
candidate fragments for every part of the protein requires a combinatorial search among the
possible choices that, once assembled together, leads to alternative putative configurations
for the protein. The search process is in charge of verifying the feasibility of each assembly,
since the combination of local arrangements could generate a non-feasible global shape, e.g.,
one that leads to a spatial clash between atoms from different fragments. If one (or more)
fragment is described by one single arrangement, that part of the protein is rigidly imposed.
This particular degenerate case can be exploited to describe rigid parts of the protein. A
specific combination of fragment length and number of instances for each fragment deter-
mines the type of protein problem being modeled. We can range from complete backbone
flexibility (fragments made of hundreds of choices for each amino acids) to secondary struc-
ture - loop models (interleaving of longer fragments modeling helices/β-strands and shorter
fragments).

The library of fragments is usually derived from the content of the Protein Data Bank
(PDB, www.pdb.org) that contains more than 96,000 protein structures. The design adopted
in our study is parametric on the choice of the library of fragments to use. For example,
our experiments use a library of fragments derived from a subset of the PDB known as
top-500 (Lovell, Davis, Arendall, de Bakker, Word, Prisant, Richardson, & Richardson,
2003), which contains non redundant proteins and preserves statistical relevance. Alterna-
tive libraries of fragments can be obtained through the use of sophisticated protein database
search algorithms, such as FREAD (Choi & Deane, 2010). We retrieve information depend-
ing on the specific amino acid sequence, since local properties greatly influence the typical
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arrangements observed. Moreover, we build libraries for different sequences lengths h, even
if for longer sequences the statistical coverage becomes weak. Nevertheless, Micheletti, Seno,
and Maritan (2000) conjectured that a relatively small set of fragment shapes (a few dozens)
of length 5, is able to describe virtually any protein. Handl, Knowles, Vernon, Baker, and
Lovell (2012) demonstrate how the size and the structure of the search space is affected
by the choice of the fragment length and how this can be used to optimize the search pro-
cess. Similar considerations have been explored by others (Hegler, Lätzer, Shehu, Clementi,
& Wolynes, 2009). Recent work show how to efficiently build such dictionaries (Fogolari,
Corazza, Viglino, & Esposito, 2012). These models can be easily accommodated into our
framework.

Each considered sequence is associated to several configurations of 5@ models, placed
according to a standardized coordinate system. In this activity, we also consider the C ′O
group of the preceding amino acid and the N atom of the following amino acid. This
extra information is needed for fragments combination, assuming that the fragment will
be connected by two peptidic bonds. Therefore, for a specific sequence, we store all the
occurrences of

C ′O NCαC
′O︸ ︷︷ ︸

h times

N

and relative positions. In order to reduce the impact of the specific properties of the
database used, we cluster this set in such a way that if two fragments have a RMSD1 less
than a given threshold, just one of them is stored. For example, for length h = 1 and a
RMSD threshold of .2Å, we can derive a fragment database of roughly 90 fragments per
amino acid.

The CG information is added later using statistical considerations about side-chain mo-
bility, that are not accounted for during the clustering described above (Fogolari, Esposito,
Viglino, & Cattarinussi, 1996).

2.3 Protein Structure Prediction

In the protein structure prediction problem, the sequence of amino acids composing a pro-
tein (known as the primary structure) is given as input; the task is to predict the three
dimensional (3D) shape (known as the native conformation or tertiary structure) of the
protein under standard conditions.

The common assumption, based on Anfinsen’s work (1973), is that the 3D structure
which minimizes some given energy function modeling the atomic force fields, is the candi-
date that best approximates the functional state of a protein. In such setting, the choice
of the number of atoms used to represent each amino acid controls the quality and the
computational complexity.

Moreover, the spatial domains where the protein’s “points” (e.g., atoms, centroids) can
be placed have an impact on the type of algorithms and search that can be performed.
The domain can be either continuous, often represented by floating point coordinates, or
discrete, often derived from a discretization of the space based on a crystal lattice structure.

1. The Root Mean Square Deviation captures the overall similarity in space of corresponding atoms, by
performing an optimal roto-translation to best overlap the two structures.
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Once the geometric model has been determined, it is necessary to introduce an energy
function, mostly based on the atoms considered and their distances. In the structure pre-
diction problem, the energy function is used to assign a score to each geometrically feasible
candidate; the candidate with the optimal score represents the solution of the prediction
problem.

Let us briefly review some popular approaches to this problem, with a particular em-
phasis on solutions that rely on constraint programming technology.

The natural approach of investigating protein conformations through simulations of
physical movements of atoms and molecules is, unfortunately, beyond the current compu-
tational capabilities (Jauch, Yeo, Kolatkar, & Clarke, 2007; Ben-David, Noivirt-Brik, Paz,
Prilusky, Sussman, & Levy, 2009; Kinch, Yong Shi, Cong, Cheng, Liao, & Grishin, 2011).
This has originated a variety of alternative approaches, many based on comparative mod-
eling—i.e., small structures from related protein family members are used as templates to
model the global structure of the protein of interest (Jones, 2006; Fujitsuka, Chikenji, &
Takada, 2006; Simons et al., 1997; Lee, Kim, Joo, Kim, & Lee, 2004; Karplus, Karchin,
Draper, Casper, Mandel-Gutfreund, Diekhans, & Source., 2003). In these methods, often
referred to as fragments assembly, a protein structure is assembled using small protein sub-
units as templates that present relevant sequence similarities (homologous affinity) w.r.t.
the target sequence.

In the literature, Constraint Programming (CP) techniques have shown their potential:
the structural variability of a protein can be modeled as constraints, and constraint solving
is performed in order to deduce the optimal structure (Backofen & Will, 2006; Barahona
& Krippahl, 2008; Dal Palù, Dovier, & Fogolari, 2004; Dal Palù et al., 2010). CP has
been used to provide approximated solutions for ab-initio lattice-based modeling of protein
structures, by using local search and large neighboring search (Shmygelska & Hoos, 2005;
Dotú, Cebrián, Van Hentenryck, & Clote, 2011); exact resolution of the problem on lattice
spaces using CP, along with with clever symmetry breaking techniques, has also been inves-
tigated (Backofen & Will, 2006). These approaches solve a constraint optimization problem
based on a simple energy function (HP). A more precise energy function has been used
by Dal Palù et al. (2004, 2007), where information on secondary structures (i.e., α-helices,
β-sheets) is also taken into consideration. Due to the approximation errors introduced by
lattice discretization, these approaches do not scale to medium-size proteins. Off-lattice
models, based on the idea of fragment assembly, and implemented using Constraint Logic
Programming over Finite Domains, have been presented (Dal Palù et al., 2010; Dal Palù,
Dovier, Fogolari, & Pontelli, 2011), and applied not only to structure prediction but also
to other structural analysis problems. For instance, Dal Palù et al. (2012b) use this ap-
proach to generate sets of feasible conformations for studies of protein flexibility. The use
of CP to analyze NMR data and the related problem of protein docking has also been
investigated (Barahona & Krippahl, 2008).

In the context of ab-initio prediction, a recent work (Olson, Molloy, & Shehu, 2011)
has shown that increasing the complexity of the conformational search space—by using
a more refined fragment library—in combination with a sampling strategy, enhances the
generation of near-native structure sets. The work of Shehu (2009) and Molloy, Saleh, and
Shehu (2013) illustrates various enhancement the fragment-based assembly process leading
to faster computations and an improved sampling of the conformation space—e.g., using
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tree-based methods inspired from motion planning to guarantee progress towards minimal
energy conformations while maintaining geometrically separate conformations. In terms of
energy landscape, the native state has generally lower free energy than non-native structures,
but it is extremely difficult to locate. Hence, a targeted conformational sampling may aid
protein structure prediction in that different near-native structure can be used to guide
the search; several schemes based on Monte Carlo movements in sampling conformation
space through fragments assembly have been proposed (Shmygelska & Levitt, 2009; Xu &
Zhang, 2012; Debartolo, Hocky, Wilde, Xu, Freed, & Sosnick, 2010). Methods based on
non-uniform probabilistic mass functions (derived from previously generated decoys) have
been proposed to aid in this problem (Simoncini, Berenger, Shrestha, & Zhang, 2012).
Sampling, however, remains a great challenge for protein with complex topologies and/or
large sizes (Kim, Blum, Bradley, & Baker, 2009; Shmygelska & Levitt, 2009).

It is widely accepted that proteins, in their native state, should be considered as dynamic
entities instead of steady rigid structures. Indeed, in recent years the research focus has
shifted towards prediction schemes that take into account the non-static nature of proteins,
supported by recent observations based on magnetic resonance techniques. Processes such
as enzyme catalysis, protein transport and antigen recognition rely on the ability of proteins
to change conformation according to the required conditions. This dynamic nature can be
visualized as a set of different structures that coexist at the same time. The generation
of such sets that capture non-redundant structures (in pure geometric terms) is a great
challenge (Kim et al., 2009). Robotics and inverse kinematics methods have been extensively
explored both in sampling proteins’ conformational space (Zhang & Kavraki, 2002; Cortes
& Al-Bluwi, 2012) and for molecular simulations (Al-Bluwi, Simeon, & Cortes, 2012; Moll,
Schwarz, & Kavraki, 2007; Noonan, O’Brien, & Snoeyink, 2005; Kirillova, Cortes, Stefaniu,
& Simeon, 2008).

A motivation for our work is to provide the ability of generating a protein set that
contains optimal and sub-optimal candidates, in order to capture dynamic information
about the behavior of a protein. A desirable property is that the conformations returned
in the pool are sufficiently diverse and uniformly distributed in the 3D space.

2.4 Protein Loop Modeling

The protein loop modeling problem is a restricted version of the structure prediction prob-
lem. We will use this problem as a working example in the remaining part of the paper.
In this context, the protein structure is already partially defined, e.g., a large number of
atoms are already placed in the space. Usually, this common scenario derives from an X-
ray crystallography analysis, where the spatial resolution of atoms degenerates in presence
of some regions of the protein that are exposed on the surface and presents an increased
instability. Since a crystal contains several copies of a protein in order to perform the mea-
surement, such regions appear as more fuzzy, and therefore the placement of atoms in these
regions may be ambiguous. Usually, these regions, referred to as loops, are not involved in
secondary structures, which are instead more stable. When dealing with homology mod-
eling, the same protein found in another organism, typically shows some variations in the
sequence due to evolution, especially in the loop regions, since they are less essential for
protein stability and functionality. Starting from an homologous protein structure, usually
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loops need to be recomputed with a specialized loop modeling approach and the use of
minimization techniques.

The length of a loop is typically in the range of 2 to 20 amino acids; nevertheless,
compared to secondary structures, the flexibility of loops produces very large, physically
consistent, conformation search spaces. Constraints on the mutual positions and orienta-
tions (dihedral angles) of the loop atoms can be deduced and used to simplify the search.
Such restrictions are defined as the loop closure constraints. In Figure 2, we have a (simple)
possible scenario where two macro-structures (two helices) are connected by a loop. In this
setting, we can assume to know the position of the two helices, while the loop atoms are to
be determined.

A procedure for protein loop modeling typically consists of 3 phases: sampling, filtering,
and ranking (Jamroz & Kolinski, 2010). Sampling is commonly based on a loop candi-
date generation, using dihedral angles sampled from structural databases (Felts, Gallicchio,
Chekmarev, Paris, Friesner, & Levy, 2008), and subsequent candidate modification in order
to satisfy the loop closure constraints. These conformations are checked w.r.t. the loop con-
straints and the geometries from the rest of the structure, and the loops that are detected
as physically infeasible, e.g., causing steric clashes, are discarded by a filtering procedure.

Popular methods used for loop modeling include the Cyclic Coordinate Descent (CCD)
method (Canutescu & Dunbrack, 2003), the algorithms based on inverse kinematics (Kolodny,
Guibas, Levitt, & Koehl, 2005; Shehu & Kavraki, 2012), the Self-Organizing (SOS) algo-
rithm (Liu, Zhu, Rassokhin, & Agrafiotis, 2009), which can simultaneously satisfy loop
closure and steric clash restrictions by iteratively superimposing small fragments (amide
and Cα) and adjusting distances between atoms, and the Wriggling method (Cahill, Cahill,
& Cahill, 2003), that employs suitably designed Monte Carlo local moves to satisfy the loop
closure constraints. Multi-method approaches have also been proposed—e.g., Lee, Lee,
Park, Coutsias, and Seok (2010) propose a loop sampling method which combines fragment
assembly and analytical loop closure, based on a set of torsion angles satisfying the imposed
constraints. Ab initio methods (Rapp & Friesner, 1999; Fiser, Do, & Sali, 2000; Jacobson,
Pincus, Rapp, Day, Honig, Shaw, & Friesner, 2004; Spassov, Flook, & Yan, 2008; Deane
& Blundell, 2001; Felts et al., 2008; Xiang et al., 2002) and methods based on templates
extracted from structural databases (Choi & Deane, 2010) have been explored.

Finally, a ranking step—e.g., based on statistical potential energy, like in DOPE (Shen
& Sali, 2006), DFIRE (Zhou & Zhou, 2002), or the one proposed in Fogolari et al. (2007),
is used to select the best loop candidates.

The sampling and filtering procedures should work together and direct the search to-
wards structurally diverse and admissible loop conformations, in order to maximize the
probability of including a candidate close to the native one and to reduce the time needed
to analyze the candidates. Our work is motivated by the need of controlling the proper-
ties of the resulting set of candidates. In particular, we model structural diversity both in
distance and orientation of the backbone and make the sampling phase guided by the loop
constraints.

Fragment-based assembly methods have also been investigated in the context of loop
modeling (Lee et al., 2010; Zhang & Hauser, 2013). Shehu and Kavraki (2012) review in
great detail loop modeling techniques.
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Figure 4: On the left: two fragments B1 (light grey) and B2 (dark grey) such that
points(B1) = ((0, 0), (1, 0), (1, 1), (2, 1)) and points(B2) = ((4, 0), (3, 0), (3, 1), (4, 1), (4, 2)).
The arrows address their initial points. On the right: observe that by rotating B2 of 90 de-
grees and then translating it by -3 units on the x-axis, the last three points of B1 (last(B1))
and the first three points of B2 (first(B2)) perfectly overlap. Thus, end(B1) _ front(B2).

3. Constraint Solving With 3D Fragments

We assume the reader to have familiarity with the basic principles of constraint program-
ming and constraint satisfaction problems (CSP); the reader is referred, e.g., to the Hand-
book of Constraint Programming (Rossi et al., 2006). In this Section, we introduce the
formalization of an effective solution to tackle practical applications concerning with the
placement of 3D fragments. Such applications are described as combinatorial problems,
modeled as a set of variables, representing the entities the problem deals with, and a set of
constraints, representing the relationships among the entities. In the context of a constraint
programming system, variables and constraints are adopted to provide a solution for the
CSP, that is, an assignment to the variables that satisfies all the constraints. We extend this
concept by enabling the constraint solver to find a representative solution for the CSP that
satisfies some additional properties expressed among the variables of the whole solution set.

3.1 Some Terminology

A fragment B is composed of an ordered list of at least three (distinct) 3D points, denoted
by points(B). The number of points of a fragment is referred to as its length. The front- and
end-anchors of a fragment B, denoted by front(B) and end(B), are the two lists containing
the first three and the last three points of points(B). With B(i) we denote the i-th point
of the fragment B. For two ordered lists of points ~p and ~q, we write ~p _ ~q if they can
be perfectly overlapped by a rigid coordinate translation and/or rotation (briefly, a roto-
translation)—see Figure 4 (let us assume the z coordinate is 0 for all points and omitted
for simplicity).

A non-empty set of fragments with the same length is called a body. A body can be
used to model a set of possible shapes for a sequence of points. We say that a body has
length k if each fragment it contains has length k.

A multi-body is a sequence S1, . . . , Sn of bodies.
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Figure 5: From left to right: the body S1 composed by an unique fragment, and the bodies
S2 and S3 composed by two fragments each. Arrows address the initial points of fragments.
All the three bodies have length 4. ~S = S1, S2, S3 constitutes a multi-body. In the rightmost
figure we report the spatial shapes associated to the four rigid bodies that can be obtained
from the multi-body ~S. One of them is identified by full lines, the other three by dashed
lines. Observe that the rigid body identified by ((0, 0), (1, 0), (1, 1), (2, 1), (2, 0), (3, 0)) can
be obtained by a rotation of 180 degrees of the fragment ((2, 0), (3, 0), (3, 1), (4, 1)) of S2 on
the x axis (flipping) and by a translation of −1 units on x and of +1 units on y. Observe
moreover that the rigid body identified by ((0, 0), (1, 0), (1, 1), (2, 1), (2, 0), (1, 0)) contains
the same point (1, 0) twice.

Given a multibody ~S = S1, . . . , Sn, a rigid body from ~S is a sequence of fragments
B1, . . . , Bn, where Bi ∈ Si for i = 1, . . . , n and end(Bi) _ front(Bi+1), for all i = 1, . . . , n−1.
A rigid body is uniquely identified by the sequence B1, . . . , Bn; however, when consecutive
fragments are overlapped, the rigid body can be alternatively identified by a list of points
that form a spatial shape. In Figure 5 we report examples of bodies, multi-bodies, and rigid
bodies. As in the previous example, we assume that the z coordinate is 0 for all points.

Remark 3.1 (Working Example) These concepts are related to the loop-modeling prob-
lem. Points are atoms. A fragment is a spatial shape of some atoms. If the last three atoms
of one fragment overlap with the first three atoms of another fragment, we can join them.
A body is a set of admissible shapes for a given list of atoms. A multi-body S1, . . . , Sn is
a sequence of these elements, corresponding to a sequence of atoms (of amino acids). The
idea is that the last three atoms of a body Si are the same as the first three of the successive
body Si+1. A rigid body is a possible complete shape of those atoms, provided the last three
atoms of the fragment selected in the set Si overlap with the first three atoms of the fragment
selected in Si+1.

The overlapping points end(Bi) and front(Bi+1) constitute the i-th joint of the rigid
body. The number of rigid bodies that can be obtained from a single multi-body S1, . . . , Sn
is bounded by Πn

i=1|Si|. Figure 6 provides a schematic general representation of a rigid
body.

A rigid body is defined by the overlap of joints, and relies on a chain of relative roto-
translations of its fragments. Each points in points(Bi) is therefore positioned according
to the (homogeneous) coordinate system associated to a fragment Bi−1. Note that once
the reference system for B1 is defined, the whole rigid body is completely positioned.2 The

2. With the exception of the case where all points of a joint are collinear. Points p1, . . . , pn, with n ≥ 3 are
collinear if the points p3, p4, . . . , pn belongs to the straight line containing the two points p1 and p2.
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Figure 6: A schematic representation of a rigid body. The joints connecting two adjacent
fragments are emphasized. The points in points(B) of each fragment are represented by
circles. Each fragment extends from the first point of a joint to the last point of the
successive joint.

relative positions of two consecutive fragments Bi−1 and Bi of a rigid body (2 ≤ i ≤ n) can
be defined by a transformation matrix Ti ∈ R4×4. Each matrix depends on the standard
Denavit-Hartenberg parameters (Hartenberg & Denavit, 1995) obtained from the start and
end of the fragments—the reader is referred to the work of LaValle (2006) for details. We
denote the product T1 · T2 · . . . · Ti · (x, y, z, 1)T by Ti(x, y, z).

Let us analyze the first matrix T1. The fragment B1 can be forced to start in a given
point and oriented in a given way; in this case the matrix T1 defines the roto-translation
of B1 fulfilling these constraints. In the absence of such constraints, we assume that B1 is
normalized by T1—i.e.,its first point is (0, 0, 0), the second point is aligned along the z axis
and the third belongs to the plane formed by the x and z axes. This orientation is referred
as the reference system Γ0.

For i = 1, . . . , n, the coordinate system conversion (x′, y′, z′), for a point (x, y, z) ∈
points(Bi) into the coordinate system of B1, is obtained by:

(x′, y′, z′, 1)T = T1 · T2 · . . . · Ti · (x, y, z, 1)T = Ti(x, y, z) (1)

Homogeneous transformations are such that the last value of a tuple is always 1.

In the rest of the paper, we focus on the 5@ model; however the proposed formalization
and methods can be used also for other models, e.g., the Cα–Cα model. In the latter
case, points(Bi) contains at least 3 amino acids, and the joints are guaranteed to be non-
colinear, due to the chemical properties of the backbone. When combining Cα fragments,
the specific rotational angles of the full-atom backbone are lost and a more imprecise multi-
body assembly is produced.

A fragment is a body associated to a sequence of amino acids. A fragment for a sequence
of h ≥ 1 amino acids is described by a body of length 4h + 3, modeling the concatenation
of the atoms represented by the regular expression: C ′O(NCαC

′O)hN . In such represen-
tation the first and last sequence of C ′ON atoms coincide with the front- and end-anchor,
respectively, and are employed during the process of assembling consecutive fragments (i.e.,
they are used in the roto-translation).

A discretized R3 space can be represented as a regular lattice, composed of cubic cells
with side length equal to a given parameter k. Each cell is referred to as a 3D voxel
(or, simply, voxel); we assume that each voxel receives a unique identifier. We denote
with voxel(p, k) the identifier of the voxel that contains the 3D point p in the context of a
discretization of the space using cubes with side length equal to k. This spatial quantization
allows an efficient treatment of the approximated propagation required by some of the
geometric constraints introduced in the following sections.
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3.2 Variables And Domains

Let us now define the variables adopted to describe the entities of a problem with fragments.
The domain of a variable V is the set of allowable values for V , and it will be denoted by
DV . To deal with fragments placements in the 3D space we adopt two distinct types of
variables:

Finite Domain Variables (FDVs): The domain of a finite domain variable is a finite
set of non negative integer numbers.

Point Variables (PVs): These variables will assume the coordinates of a 3D point in R3.
Their domains are, initially, 3D boxes identified by two opposite vertices 〈min,max〉,
as done in the discrete solver COLA (Dal Palù, Dovier, & Pontelli, 2005, 2007).

Remark 3.2 (Working Example) Following Remark 3.1, FDVs are the identifiers of the
various fragments in a body, while PVs are used to represent the 3D coordinates assigned
to the various structural points (e.g., atoms, centroids) of interest for each molecule being
considered. Clearly, the values of PVs will depend deterministically on the values of FDVs
(and vice-versa).

A variable is assigned if its domain contains a unique value; in the case of point variables,
this happens if DV = 〈min,max〉 and min = max.

3.3 Constraints

In this section, we formalize the constraints that define the fragments placement, that can
be used to describe Protein Structure problems in the context of fragment assembly.

3.3.1 Distance Constraints

Distance constraints model spatial properties of point variables operating in the 3D space.
Point variables P and Q can be related by a distance constraint of the form

‖P −Q‖ op d (2)

where ‖ · ‖ is the Euclidean norm, d ∈ R+ and op is ≤ or ≥.
The built-in global constraint alldistant associates a minimal radius di to each point

variable Pi (i = 1, . . . , n) and ensures that spheres surrounding each pair of point variables
do not intersect:

alldistant(P1, . . . , Pn, d1, . . . , dn), (3)

This constraint is equivalent to the constraints ‖Pi−Pj‖ ≥ di+dj for all i, j ∈ {1, . . . , n}, i <
j. It is used to avoid steric clashes among different atoms (and centroids), which have
different volumes. Checking consistency of the alldistant constraint (given the domains
of the variables Pi) is NP-complete (Dal Palù, Dovier, & Pontelli, 2010)—the proof is based
on an encoding of the bin-packing problem using the alldistant constraint, and holds true
even in this particular setting, where the point variables have intervals of R3 as domains.

Remark 3.3 (Working Example) The alldistant constraint is introduced to avoid clashes
when a rigid body is obtained from the multi-body S1, . . . , Sn. The distance constraints are
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Figure 7: Fragments are assembled by overlapping the plane βR, described by the rightmost
C ′, O,N atoms of the first fragment (left), with the plane βL, described by the leftmost
C ′, O,N atoms of the second fragment (right), on the common nitrogen atom

useful when some extra information is known (e.g., one might have inferred by biological
arguments that a pair of amino acid should stay within a certain distance).

3.3.2 Fragment Constraint

Fragment constraints relate finite domain variables and point variables. Let us assume we
have a database F of fragments, where F [i] represents the i-th fragment in the database.
Thus, given an FDV variable V , F [V ] denotes the fragment indexed by V when V is
instantiated. The fragments are stored in F as an ordered list of 3D points.

Given a list of point variables ~P , the constraint:

fragment(V, ~P , F ) (4)

states that there exists a roto-translation Rot such that ~P = Rot · F [V ]—namely, if V = i
then the list of points ~P should take the form of the fragment F [i]. For simplicity, we
will omit the database F when clear from the context. Intuitively, these constraints ensure
that any fragment choice will reproduce the correct shape for the associated 3D point,
regardless of the space orientation of the fragment. The orientation is determined by the
joined multi-body constraint presented in a following section.

3.3.3 Centroid Constraint

The centroid constraint enforces a relation among four PVs. Intuitively, the first three
of them are associated to the atoms N,Cα, C

′ of an amino acid and the fourth is related
to the centroid CG. The constraint is parametric w.r.t. the type a of an amino acid and
deterministically establishes the position of CG depending on the position of the other points:

centroid(PN , PCα , PC′ , PCG, a) (5)

In Figure 7 the centroids are displayed along the backbone as purple circles and labeled
“CG.” This constraint can be used when the database of fragment contains only full back-
bone information. The centroid information is used in place of the missing full-atom side
chain. The side-chain centroid is computed by taking into account the average Cα-side-chain
center of mass distance, the average bend angle formed by the side-chain center-of-mass-
Cα-C ′, and the torsional angle formed by the N -Cα-C ′-side-center of mass (Fogolari et al.,
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1996). This abstraction allows us to reduce the number of fragments to consider, removing
fragments that would geometrically conflict with the position of the CG. Consider that a
single side chain may have up to 100 main configurations (rotamers).

3.3.4 Table Constraint

This constraint is used to restrict the assignments of a set of FDVs (representing fragments)
to specific tuples of choices. This is useful when modeling a specific local and collaborative
behavior that involves more than one fragment; for example, this happens when modeling a
secondary structure multiple arrangements of underlying amino acids and/or when specific
approximation strategies are employed.

Let F be a set of k-tuples of integer values and ~V a k-tuple of FDVs. A table (or
combinatorial) constraint, of the form

table(~V , F ) (6)

requires that the list of variables ~V assumes values restricted to the tuples listed in F , i.e.,
there exists t ∈ F such that ~V [i] = t[i], with i in 0, . . . , k − 1.

Remark 3.4 (Working Example) Going back to the loop-modeling problem, the role of
the fragment constraint is evident: it relates the (IDs of the) selected fragments of a multi-
body with the 3D positions of the various atoms involved. The centroid constraint is
instead introduced to add the position of the centroid that represents the side chain in the
5@ representation. table constraint is a common constraint in constraint languages and it
is useful when some info on consecutive fragments in a rigid body is known due to external
knowledge.

3.3.5 Joined Multibody Constraint

The Joined Multibody (JM) constraint enforces a relation over a list of FDVs encoding a
multibody. It limits the spatial domains of the various fragments composing the multibody
in order to retain those fragments that assemble properly and that do not compenetrate.
The joined-multibody (JM) constraint is described by a tuple: J = 〈~S, ~V , ~A, ~E , δ〉, where:

• ~S = S1, . . . , Sn is a multi-body. Let B = {B1, . . . , Bk} be the set of all fragments in ~S,
i.e., B =

⋃n
i=1 Si.

• ~V = V1, . . . , Vn is a list of FDVs, with domains DVi = {j : Bj ∈ Si}.
• ~A = A1,A2,A3, and ~E = E1, . . . , E3n are lists of sets of 3D points such that:

◦ A1 ×A2 ×A3 is the set of admissible points for front(B), with B ∈ S1;

◦ E3i−2×E3i−1×E3i is the set of admissible points for end(B), with B ∈ Si, i = 1, . . . , n;

• δ is a constant, used to express a minimal distance constraint between different point.

A solution for the JM constraint J is an assignment σ : ~V −→ {1, . . . , |B|} s.t. there exist
matrices T1, . . . , Tn (used in T ) with the following properties:

Domain: For all i = 1, . . . , n, σ(Vi) ∈ DVi .

Joint: For all i = 1, . . . , n−1, let (a1, a2, a3) = end(Bσ(Vi)) and (b1, b2, b3) = front(Bσ(Vi+1)),
then it holds that (for j = 1, 2, 3):

Ti(ajx, ajy, ajz) = Ti+1(bjx, b
j
y, b

j
z)
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Campeotto, Dal Palù, Dovier, Fioretto, & Pontelli

Spatial Domain: Let (a1, a2, a3) = front(Bσ(V1)), then T1 · aj ∈ Aj × {1}.3 For all i =
1, . . . , n, let (e1, e2, e3) = end(Bσ(Vi)) then

Ti(ejx, ejy, ejz) ∈ E3(i−1)+j × {1}
where 1 ≤ j ≤ 3 and T2, . . . , Ti (in Ti) are the matrices that overlap end(Bσ(Vi−1)) and
front(Bσ(Vi))

Minimal Distance: For all j, ` = 1, . . . , n, j < `, and for all points a ∈ points(Bσ(Vj)) and

b ∈ points(Bσ(V`)), it holds that:4

‖Tj(ax, ay, az)− T`(bx, by, bz)‖ ≥ δ
It has been proved that establishing consistency—i.e., existence of a solution—of JM

constraints is NP-complete (Campeotto et al., 2012). We have also proved that it remains
NP complete even assuming that all all the fragments of the problem have the same three
atoms with the same spatial position, and that the same holds for the last three atoms (of
course fragments are allowed to contain more than three atoms otherwise the problem is
trivial). The proof is reported in www.cs.nmsu.edu/fiasco/.

Remark 3.5 (Working Example) The JM constraint contains exactly all the ingredients
needed for modeling a loop problem. We have a multi-body ~S, and the corresponding FDs
~V , we have a set of possible 3D points where the loop starts ~A and a set of possible 3D
points where the loop ends ~E and a weak version of the alldistant constraint between pair of
atoms that avoid clashes, the solutions are the (non clashing) rigid bodies that starts in ~A
and ends in ~E.

Let us observe that the JM constraint does not explicitly forbid spatial positions to PVs
variables (save for the first three and the last three points of the loop). However, these
additional constraints can be explicitly required during domain definition of the PVs variables
used for the encoding.

Remark 3.6 The choice of using three points of overlap resembles the method proposed by
Kolodny, Guibas, Levitt, and Koehl (2005). On the other hand, we should observe that it is
only a technical exercise to modify the JM constraints and so that they allow a parametric
overlap between contiguous fragments.

4. The FIASCO Constraint Solver

We present the overall structure and implementation of a hybrid constraint solver capable
of handling the classes of constraints described in the previous section.

4.1 Constraint Solving

A distinctive feature of FIASCO is the possibility to handle continuous domains at the cost
of keeping a discrete library of choices (finite domain variables). The handling of fragments
allows us to reason about spatial properties in a more efficient and descriptive way than
the pure 3D domain modeling adopted in previous proposals. Moreover, FIASCO allows

3. The product ×{1} is necessary as we use homogeneous coordinates.
4. Let us observe that this is a weak form of the alldistant constraint where different distances for each

point are allowed. It is, in a sense, closer to the alldifferent constraint.

970



A Constraint Solver for Flexible Protein Models

the solver to uniformly sample the search space by means of a spatial equivalence relation
that is used to control the tradeoff between accuracy and efficiency. This is particularly
effective when the finite domains are heavily populated, and is a critical component to
model real-world problems.

The constraint solver builds on the classical prop-labeling tree exploration where con-
straint propagation phases are interleaved with non-deterministic branching phases used to
explore different value assignments to variables (Apt, 2009). The solver is able to handle
both point variables and finite domain variables—this is the reason why we refer to it as
an hybrid solver. In particular, the assignments to finite domain variables guide the search;
their values imply assignments of the point variables, that in turn may propagate and reduce
the domains of both point variables and finite domain variables. Moreover, the “propaga-
tion” technique implemented for the JM constraint is not a classical filtering technique—it
is an approximated technique that we describe later.

The presence of point variables allows, in principle, an infinite number of domain values
in R3. However, we noted that the information carried by assembling fragments (encoded
by finite domain variables) is much more informative than any complex and demanding
model for 3D continuous space (e.g., Oct-trees, CSG, no-goods). In particular, the direct
kinematics encoded by a JM constraint is able to efficiently identify a set of admissible
regions of a point variable in a fast, approximated, and controlled way. Therefore, the
point variables can be seen as an internal aid to propagation. These variables are updated
during the JM propagation phase and can interact with the JM propagator to prune the
corresponding fragment variables. Distance constraints on point variables are included in a
standard AC3 propagation loop for domains updates.

The other aspect that extends the classical solver structure is the capability of control-
ling the amount of the search tree to be explored. The search tree contains a large number
of branches that are very similar, from the point of view of the geometric distance between
corresponding point variables. The goal is to produce a subset of feasible solutions that
exhibit significant 3D differences between themselves. This is accomplished by introducing
the possibility to explore a subtree of a given depth, by enumerating a specific and limited
number of branches, rather than following the standard recursion of propagation and ex-
pansion. To achieve this behavior, it is necessary to selectively interfere with the standard
recursive call to the solver, and implement a non-deterministic assignment of partial tuples
of finite domain variables. This resembles the implementation of a table constraint, which
is dynamically created during the search. This strategy allows us to significantly reduce
the number of branches explored in the subtree, and produces significant results when the
selection of the branches is controlled by an adequate partitioning function. In this work,
we propose an effective partitioning function based on a measure of 3D similarity for point
variables; this is used to direct the search along specific branches of controlled depth that
are adequately “separated” by the partitioning function. This is practically realized by
introducing a form of look-ahead, controlled by the JM propagator, that returns a set of
partial assignments as well as the filtered domains for the finite domain variables.

4.1.1 The Hybrid Solver
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Algorithm 1 search(~V , ~P , ~D, C, `)
Require: ~V , ~P , ~D, C, `

1: if ` > |~V | then
2: output (~P )
3: return
4: end if
5: for each fragment index f in Dv` do

6: if AC-3(C ∪ {v` = f}, ~V , ~P , ~D) then
7: Tn×m ← get table from JM()
8: if n > 0 then
9: Non-deterministically select i in 1..n

10: for j = 1..m do
11: C ← C ∪ {v`+j = T [i][j]}
12: end for
13: search(~V , ~P , ~D, C, `+m)
14: else
15: search(~V , ~P , ~D, C, `+ 1)
16: end if
17: end if
18: end for

The general structure of the solver is highlighted in Algorithm 1. The solver is designed
to process a list ~V = v1, . . . , vn of finite domains variables, together with the domains
Dv1 , . . . , Dvn for them. Intuitively, each domain is a set of indices for the set of fragments.
Moreover, the solver receives a list ~P = p1, . . . , p5n of 5 ∗ n point variables, where the
variables p4∗i, . . . , p4∗i+4 are related to the fragment in the domain Dvi . Each point variable
pj has, in turn, a spatial domain Dpj . C represents the constraints between elements of ~V

and ~P . Finally, the solver receives also as input the “current” level ` in the exploration of
the search tree (set to 1 the first time the procedure is called). For the sake of simplicity,
the choice of variables to be assigned is based on their ordering in the input list (more
sophisticated selection strategies can be easily introduced). When we enter the level `, we
assume that the variables v1, . . . , v`−1 have already been assigned.

Let us briefly describe the algorithm. If all the variables in ~V have already been assigned
(lines 1–4), then the search algorithm terminates and returns the computed solution, repre-
sented by the values assigned to the variables ~P . Otherwise, we non-deterministically select
a fragment index in the domain of the variable v` and assign it to the variable. Lines 6–7
indicate the execution of a standard constraint propagation step (using AC-3). If the propa-
gation step fails, then we assume that another non-deterministic choice is made, if possible.
Every reference to a non-deterministic choice in the algorithm corresponds to the creation
of a choice-point that will be the target of backtracking in case of failure (for simplicity,
we assume chronological backtracking). If it succeeds, leading to a possible reduction of
the domains ~D, then the computation will proceed. A table constraint might be produced
during the propagation of the JM constraint in the AC-3 procedure (see below for details).
If this is the case (lines 8–9), some (m) variables are non-deterministically assigned with
the values in the table (lines 9–12), and the search continues with m less variables to be
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assigned (line 13). If this is not the case, then the search will continue with only one less
variable (v`) to be assigned (line 15).

A peculiar feature of our constraint solver (not reported in the abstract algorithm just
defined) is that it can be used to avoid the search of solutions “too similar” to each others.
Let us assume that the 3D space is partitioned in cubic voxels of size kÅ. Then, given a list
of FDVs ~V and a list of PVs ~P , the user can state:

uniqueseq(~V , ~P , k) (7)

This constraint forces the solver to prune the search tree in the following way. Given
a partial assignment σ, let v ∈ ~V be the variable to be assigned at the next step and
p1, . . . , ph ∈ ~P the PVs to be consequently instantiated. The constraint ensures that for
any two assignments σ1, σ2 extending σ to v, p1, . . . , ph it holds that there exists at least
one i ∈ {1, . . . , h} such that σ1(pi) and σ2(pi) do not belong to the same voxel.

4.2 Constraint Propagation

In this section, we discuss the propagation rules associated to the various constraints in-
troduced in Section 3.3; these are applied within the call to the AC-3 procedure (line 6 of
Algorithm 1). The constraint propagation is used to reduce the domain size of the PVs and
FDVs, ensuring constraint consistency. AC-3 is a standard implementation of a fixpoint
propagation loop (Apt, 2009; Rossi et al., 2006).

4.2.1 Joined Multibody Constraint

The JM constraint is a complex constraint that is triggered when the leftmost points in-
volved in the constraint (anchors) are instantiated. The JM propagation (JMf) is based on
the analysis of the distribution in the space of the points involved. The goal of the propa-
gation is to reduce the domains of the FDVs through the identification of those fragments
that cannot contribute to the generation of a rigid body that is compatible with the corre-
sponding Point Variable domains. This can be viewed as a form of hyper-arc consistency
over a set of fragments. Moreover, due to complexity and precision considerations, this
propagator is approximated by the use of a spatial equivalence relation (∼), that identifies
classes of tuples of fragments; these classes have the property to be spatially “different”
from one another.

This allows a compact handling of the combinatorics of the multi-body, while a controlled
error threshold allows us to select the precision of the filtering. The equivalence relation
captures those rigid bodies that are geometrically similar, allowing the search to “compact”
small differences among them.

The JMf algorithm receives as input a JM-constraint 〈~S, ~V , ~A, ~E , δ〉, along with

• A set G of points that are not available for the placement of bodies, and

• The equivalence relation ∼.

For the sake of readability, we assume that the domain information for variables are avail-
able. The algorithm builds a table constraint table (~V ,Tab). In this process, the algorithm
makes use of a function ρ (lines 7 and 8); this function takes as input two lists ~a and ~b of
3D points, and computes the homogeneous transformation to overlap ~b on ~a. A call to
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Algorithm 2 The JMf algorithm.

Require: ~S, ~V , ~A, ~E , δ,G,∼
Ensure: Tab

1: n← |~V |; Tab = ∅

2: R1 ←

(B, T1) B ∈ S1,∃T1


T1 · start(B) ∈ A1 ×A2 ×A3 ∧
T1 · end(B) ∈ E1 × E2 × E3 ∧
∀p ∈ points(B).∀q ∈ G. ‖(T1 · p)− q‖ ≥ δ ∧
∀c ∈ C involving p.consistent(c))




3: P1 ← {T1 · end(B) | (B, T1) ∈ R1}
4: for each i = 2, . . . , n do
5: Pi = ∅; Ri = ∅;
6: for each E ∈ Pi−1/∼ do

7: Ri ← Ri ∪

B ∈ Si
T = ρ(E, start(B)) ∧ T 6= fail ∧
T · end(B) ∈ E3i−2 × E3i−1 × E3i ∧
∀p ∈ points(B).∀q ∈ G. ‖(T · p)− q‖ ≥ δ ∧
∀c ∈ C involving p.consistent(c))


8: Pi ← {ρ(E, start(B)) · end(B) | B ∈ Ri}
9: end for

10: compute Pi/∼ and filter Ri accordingly
11: end for
12: for each representative L of Pn/∼ do
13: Tab = Tab ∪ η(L)
14: end for

this function will fail if ~a 6_ ~b. For simplicity, the fourth component (always 1) of the
homogeneous transformation is not explicitly reported in the algorithm.

For i = 1, . . . , n = |~V |, the algorithm computes the sets Ri and Pi, that will respectively
contain the fragments from Si that can still lead to a solution, and the corresponding allowed
3D positions of their end-points. For each fragment B ∈ Ri+1 we denote with parent(B)
the set of fragments B′ ∈ Ri such that end(B′) _ front(B) via ρ. For each fragment B, we
denote with label(B) the corresponding FD value associated.

In computing/updating Ri and Pi, only fragments that have end-anchors contained in
the bounds E3i−2, E3i−1, E3i are kept. Fragments that would cause points to collapse—i.e.,
due to a distance smaller than δ from previously placed points—are filtered out (lines 2 and
7). Moreover, the spatial positions of the points of the first fragment are validated against A
(line 2); finally, we enforce the consistency check of each constraint c ∈ C involving points in
points(B) ∈ Si to retain only those points that can potentially reach the admissible positions
(lines 2 and 7).

The algorithm performs |~V | − 1 iterations (lines 4–11). First Ri and Pi are computed
on the basis of the sets of end-anchors of the previous level Pi−1 and the starting point of
a selected fragment B, filtering out those that are not overlapping and those that lead to
wrong portions of space (lines 7–8). The filtering based on ∼ is applied (line 10). During
this step, the set of triples of 3D points Pi is clustered using ∼. A representative of each
equivalence class is chosen (within Pi) and the corresponding fragment in Ri is identified;
all the other (non-identified) fragments are filtered out from Ri. Let us also note that the
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filtering based on clustering is not performed for the initial step P1, as typically this is
already captured by the restrictions imposed by A.

Once the fragments reachable at last iteration are determined and their representatives
selected, we populate the Tab with the set of tuples associated to each representative L.
The function η(L) returns the assignments to ~V that allows us to overlap the last point to
L.

The JMf algorithm is parametric w.r.t. the clustering relation and the function selecting
the representative; they both express the degree of approximation of the rigid bodies to
be built. The proposed clustering relation for loop modeling takes into account two fac-
tors: (a) The positions of the end-anchors in the 3D space and (b) The orientation of the
plane formed by the fragment’s anchor βL w.r.t. a fixed reference system Γ0 adopted by
FIASCO (c.f. Figure 7). This combination of clusterings allows to capture local geometrical
similarities, since both spatial and rotational features are taken into account.

The spatial clustering (a) used is the following. Given a set of fragments, three end
points C ′ON (end anchors) of each cluster are considered, and the centroid of the triangle
C ′ON is computed. We use three parameters: kmin, kmax ∈ N, kmin ≤ kmax, and r ∈ R,
r ≥ 0. We start by selecting a set of kmin fragments, pairwise distant at least 2r. These
fragments are selected as representatives of an equivalence class for other fragments that fall
within a sphere of radius r centered in the centroid of the representative. This clustering
ensures a rather even initial distribution of clusters, however some fragments may not fall
within the kmin clusters. We allow to create up to kmax − kmin new clusters, each of
them covering a sphere of radius r. Remaining fragments are then assigned to the closest
cluster. The employed technique is a variant of the k-means clustering algorithm called
leader clustering algorithm; it allows a fast implementation and acceptable results.

The orientation clustering (b) partitions the fragments according to their relative orien-
tation of planes βR w.r.t. Γ0. A plane spatial orientation is described by the Euler angles
φ, θ, ψ of its frame w.r.t. Γ0. This algorithm produces a variable number of partitions de-
pending on β. In particular, given a threshold β > 0 there are 3 ·(360/β) possible partitions
describing equal regions on a sphere though the interval (φ ± /β2 , θ ± /

β
2 , ψ ± /

β
2 ). Each

fragment is allotted to the partition determined by β.
The final cluster is the intersection of the two partitioning algorithms. This defines an

equivalence relation ∼ depending on kmin, kmax, r, and β. The representative selection
function selects the fragment for each partition according to some preferences (e.g., most
frequent fragment, closest to the center, etc.).

Note that for r = 0, β = 360, and kmax unbounded, no clustering is performed and
this would cause the combinatorial explosion of every possible end-anchor on the whole
problem. The spatial error introduced depends on r and β. With β = 360, the error
introduced at each step can be bounded by 2r for each dimension. At each iteration the
errors are linearly increased, since a new fragment is placed with an initial error gathered
from previous iterations, thus resulting in a 2nr bound for the last end-anchor. Clearly this
bound is very coarse, and on average the experimental results show better performances.
Similar considerations can be argued for rotational errors, however the intersection of the
two clusterings, provide, in general, a much tighter bound.
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F. Campeotto et al.

Figure 9: A graphical representation of the propagation of a JM constraint over the variables Vi, . . . , Vi+3.
(a) A simultaneous placement of all the elements in the domain of the variable Vi+1 is simulated, by
overlapping each corresponding fragment with the end-anchor of the fragment associated to the element in
the domain of Vi. The set of points Pi+1 is computed and clustered using the relation ⇠ (points within
the dotted ellipses). For each cluster one fragment representative is hence chosen (highlighted fragments
with filled rightmost circle). The collection of representatives constitutes the set Ri+1 (b) The previous
step is performed again on the basis of the end-anchors related to the fragments representatives chosen in
the previous level. The filled box, represents the set of points G that are not available for the placement
of bodies (for instance due to a distance constraint). and the fragment falling in such area are discarded.
(c) In the last iteration of the JMf algorithm the set of points Pi+3 is not clustered, but only those that
reach the desired position are retained, for instance the front-anchor associated to the fragment of the next
variable, and the sequence of fragments able to lead to such condition (marked by thick lines) are selected
to populate the table Tab.

24

Figure 8: A graphical representation of the propagation of a JM constraint over the variables Vi, . . . , Vi+3.
(a) A simultaneous placement of all the elements in the domain of the variable Vi+1 is simulated, by
overlapping each corresponding fragment with the end-anchor of the fragment associated to the element in
the domain of Vi. The set of points Pi+1 is computed and clustered using the relation ∼ (points within
the dotted ellipses). For each cluster one fragment representative is hence chosen (highlighted fragments
with filled rightmost circle). The collection of representatives constitutes the set Ri+1 (b) The previous
step is performed again on the basis of the end-anchors related to the fragments representatives chosen in
the previous level. The filled box, represents the set of points G that are not available for the placement
of bodies (for instance due to a distance constraint). and the fragment falling in such area are discarded.
(c) In the last iteration of the JMf algorithm the set of points Pi+3 is not clustered, but only those that
reach the desired position are retained, for instance the front-anchor associated to the fragment of the next
variable, and the sequence of fragments able to lead to such condition (marked by thick lines) are selected
to populate the table Tab.
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P

Q

||P-Q||≤d

Figure 9: The effect of a distance constraint ||P − Q|| ≤ d propagation. Empty boxes
represent the original PVs domains and the full boxes represent the reduced PVs domains
after the effect of constraint propagation.

4.2.2 Distance Constraints

The propagation of the distance constraints is an approximated technique that reduces the
size of the box domains. We introduce the following operations over PVs box domains of
two variables P and Q that will be used to describe the propagation rule in this and in the
following subsections:

Domain intersection: DP ∩ DQ = 〈max(Pmin, Qmin), min(Pmax, Qmax)〉
Domain union: DP ∪ DQ = 〈min(Pmin, Qmin), max(Pmax, Qmax)〉

Domain dilatation: DP + d = 〈Pmin − d, Pmin + d〉

where max(P,Q) = (max(Px, Qx),max(Py, Qy),max(Pz, Qz)), (and similarly for min), and
P + d = (Px + d, Py + d, Pz + d).

Given two point variables P and Q, with domains DP and DQ, respectively, the simpli-
fication rule for the constraint ||P −Q|| ≤ d updates the domains as follows:

DP = ((DQ + d) ∩ DP ) DQ = ((DP + d) ∩ DQ) (8)

which ensures that the points in DP and DQ are positioned within an approximation of a
sphere of radius d. The sphere is approximated by considering the box inscribing it (a cube
of side 2d), as illustrated in Figure 9.

The propagation of the constraint ||P − Q|| ≥ d is harder as the coarse representation
of the box domains adopted in this work to model PVs does not allow the description of
more complex polyhedron. We hence apply a simple form of bound consistency described
by the following rule:

||P −Q|| ≥ d :

{
(DP ∪ DQ) = 〈l, u〉, ||u− l|| < d

}{
DP = ∅,DQ = ∅

} (9)

that establishes unsatisfiability of the constraint.

977
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4.2.3 Fragment Constraint

The propagation a fragment constraints fragment(V, ~P , T ) is exploited during the solution
search to enforce the assembly process of the fragment T [V ] along the point variables
P1, . . . , Pn of ~P . Recall that DV is the domain of V containing the references {j1, . . . , jk}
to the database of fragments T .

fragment(V, ~P , T ) :

{
DP1 ={p1}, DP2 ={p2}, DP3 ={p3},DV = {j1, . . . , jk}

}
n∧
i=1

DPi = DPi ∩
jk⋃

f=j1

{ρ((p1, p2, p3), T [f ]) · T [f ](i)}


(10)

where ρ((p1, p2, p3), T [f ]) is the roto-translation to be applied to overlap the first three
points of the fragment T [f ] with the start-anchor (p1, p2, p3).

The conjunction in the bottom part of the rule re-evaluates the domains for P1, P2, P3,
and it may reduce the singleton domains to empty whenever there is no compatible ρ for
the selected fragment.

4.2.4 Centroid Constraint

When the positions of the atoms N , Cα and C ′ for an amino acids a are determined, the
propagation algorithm enforces the value for the PV PCG involved in the centroid constraint.

centroid(PN , PCα , PC′ , PCG, a) :

{
DPN ={pN}, DCα ={pCα}, DPC′ ={pC′}

}{
DPCG = (DPCG ∩ {cg(pN , pCα , pC′ , a)})

} (11)

where cg(pN , pCα , pC′ , a) is a support function which returns the center of the mass for
the side chain of the amino acid a by considering the points pN , pCα , pC′ , as described in
Sect. 3.3.3.

4.2.5 Some Implementation Details

The proposed solver relies on an efficient C++ implementation, and it is carefully designed
to allow additional tailored solving capability without the need of reshaping the core struc-
tures.

The internal representation of the domains of the finite domain variables can be ab-
stracted by two arrays of the same length of the size of the initial domain. One array points
to the values and the other is a Boolean bit-mask that states whether a value is still in the
domain. If all flags are set to 0, the current partial assignment cannot be a part of a solution
of the overall constraint; if exactly one is set to 1, then the variable is assigned to a value.
This representation implies a linear scan of the domains during the propagation but it is
justified by the reasonably small size of the domains of the target application (typically less
than 100 values). The internal representation of the domains for point variables is simply a
pair 〈min,max〉 that uniquely characterizes a 3D box in R3. Since these variables are used
mostly in distance constraints, this representation is expressive enough (Oct-trees have been
considered but with no significant advantage).

Point Variables propagation has been described above; these variables are instantiated
after fragment selection.
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For the management of the uniqueseq property (7) we implemented a dedicated data
structure based on hash tables. Every time a PV is assigned, its value is mapped into a 3D
voxel of fixed size. The 3D grid is implemented via a Hash Table with voxel indexes as keys
and points contained in such voxels as values. All the operations can be performed in Õ(1)
(amortized complexity).

4.3 One Or More JM Constraints

We briefly describe how we have modeled two problems with FIASCO. The JM constraint
is able to model geometrically assembly of fragments and therefore it is used for every
protein model. A single JM that covers a protein ensures its flexibility, however for long
proteins some computational and precision issues arise. It can be beneficial to model a
protein by multiple JM constraints, e.g. JM(i, j) and JM(j, k) so that the amino acids
from i to j are covered and the JM constraints overlap on a common amino acid. This
practical choice improves the approximate search and allows to increase the number of
different solutions produced. In practice, each protein section handled by a JM constraint
is potentially combined to the different arrangements for the other sections. Therefore, it
is expected that the number of solutions found grows exponentially in the number of JM
constraints. The other JM constraint parameters can be used to control clustering precision
and number of conformations found.

5. Experimental Results

We report on the experimental results obtained with the FIASCO system (available at
http://www.cs.nmsu.edu/fiasco). Experiments are conducted on a Linux Intel Core i7
860, 2.5 GHz, memory 8 GB, machine. The solver has been implemented in C++.

The fragment database adopted is the FREAD database which has been shown to be ef-
fective in loop structure prediction (Choi & Deane, 2010). For the parameters analysis 5.1.4
we use a database of fragments of length 1. These fragments are classified by their amino
acid class and their frequency of occurrence over the whole top-500.

We set the system to model the two applications described below. In particular, in
Section 5.1 we analyze the loop modeling scenario and we focus on the performances of JM
filtering by examining the filtering power and computational costs. Next, we compare the
quality of the loop conformations generated, by measuring the RMSD of the proposed loop
with respect to the native conformation. We then present some relationships among the
JM parameters to control quality and efficiency.

In Section 5.2 we show some examples of ab-initio protein structure prediction and we
conclude with a comparison of FIASCO against other constraint solvers, for protein models
that can be described by a common subset of constraints.

5.1 Loop Modeling

The loop modeling problem is formalized by the presence of two known (large) fragments
that are both fixed in the space. A sequence of amino acids of length n is given for connecting
these two parts of the protein. A JM constraint is defined over the sequence, with particular
attention to the starting and ending points that are fixed. The start of the first fragment
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Figure 10: An example of loop computed by our tool

and the end of the last fragment, namely a sequence C ′ON (initial points) of coordinates
~a = (a1, a2, a3), and a sequence C ′ON (final points) of coordinates ~e = (e1, e2, e3) are
known. There is one caveat about the end points: due to the discrete nature of fragment
assembly, it is unlikely to exactly reach the final points. We accommodate for some errors,
and require that the JM constraint produces results that fall within some threshold from
the corresponding final points.

In Figure 10 we show an Example of loop computed by our tool (the parts of the protein
to be connected are shown on the left and the connecting loop on the right).

Additional spatial constraints about points (e.g. no-good regions determined by presence
of other atoms) are given. The constant δ (now δ = 1.5Å) asserts a minimum distance
between pairs of atoms.

5.1.1 Filtered Search Space And Performances

We selected 30 protein targets from a set of non-redundant X-ray crystallography structures
as done by Canutescu and Dunbrack (2003). We partitioned the proteins into 3 classes
according to their loop region lengths (n = 4, 8, and 12). We model a CSP that uses
fragment assembly to model the loop, in particular using the JM constraint over the loop
region.

To assess the filtering capabilities of FIASCO, we perform an exhaustive search generat-
ing all the solution for each of the protein targets. Using a clusterization of 0.2Å, a number
of different fragments of length 1 is found for each amino acid (see Fig. 11). The size of
the domains for the corresponding FDVs is bound by 100—this is an adequate sampling to
describe a reasonable amino acid flexibility. In those cases where the number of fragments
exceeds 100, the 100 most frequent ones are kept.

This increases the likelihood of generating a loop structure that is similar to the native
one. A loop of length n generates an exponential search space of size bounded by 100n. The
selected variable is the leftmost one. Fragments are selected in decreasing frequency order.
We have imposed a JM constraint for every 4 consecutive amino acids. The clustering
parameters are set as follows: the kmin value is equal to the size of the domains, while we
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Figure 11: Number of different fragments (after clustering) per amino acid in the dataset

have used different values for kmax based on loop lengths. The values for r and β are set to
120 and 0.5 in each setting. A summary of the parameters is listed in Table 1.

In Table 1 we report the average times needed to exhaustively explore the loop search
space, and the average number of solutions generated.

n JM Parameters Full JM
# JM kmin kmax β r # Solutions Time (s)

4 1 100 1000 120 0.5 597 3.13
8 2 100 500 120 0.5 98507 10.12
12 3 100 100 120 0.5 328309 28.87

Table 1: Loop Modeling settings and average running times (in seconds) and number of
solutions generated.

5.1.2 JM Approximated Propagator Quality

Even if the approximated JM produces a small set of solutions, we show here that this is
a good representation of the overall variability of the protein structure. For this test, we
compare the solutions by means of RMSD from the original structures. The experiments
were carried out with the same 30 protein targets and settings described in Table 1, with
the only exception of kmax for the loop set of size 12, which was set to 500.

In Figure 12 we show the bar chart for the RMSD of the predictions for each protein
loop within the group of targets analyzed. Precisely, in the x-axis there are the 30 (10 for
each loop length) protein targets. Each bar reports the best RMSD (dark), the average
RMSD (grey), and the worst RMSD (light grey) found. Numbers over the bars represent
the number of loops found (multiplied by the factors indicated underneath). The results
are biased by the fragment database in use: we excluded from it the fragments that belong
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Figure 12: RMSD comparison for each Loop Set (x-axis: the 30 protein targets)

to the deposited protein targets. Therefore, it is not possible to reconstruct the original
target loop and none of the searches are expected to reach a RMSD equal to 0.

For loops of length 8 and 12, the exploration of the whole conformational search space
using a simple search procedure would result in an excessively long computation time. This
enforces the need for a propagator such as JM, as its filtering algorithm successfully removes
redundant conformations and it allows us to cover the whole search space in a short period
of time.

In Fig. 12 loop predictions are calculated using fragments of length 1. To study how
this choice affects both time and accuracy of the sampling we also model the loops of length
12 using fragment of length 3, 6, and 9. Best RMSDs are reported in Figure 13. For these
experiments we kept the settings used above (kmax = 500). Moreover, each JM constraint
is imposed on the fragments in order to cover the whole fragment (e.g, for fragments of
length 3 we set a JM constraint every three consecutive amino acids) and we set a time-out
of 3600 Seconds.

Notice that increasing the length of the fragments the accuracy decreases due to the
reduced size of the domains. Nevertheless, the time is also reduced since the sampling is
performed on a smaller search space and the JM constraints cover longer sequences of amino
acids. The average times are: 1580.14, 0.98, and 0.74 seconds using fragments of length 3,
6, and 9 respectively.
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Figure 13: RMSD comparison for loop sampling on loops of length 12 using fragments of
length 3, 6, and 9.
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5.1.3 Comparison With State-of-the-art Loop Samplers

In this section, we compare our method to three state-of-the-art loop samplers: the Cyclic
Coordinate Descent (CCD) algorithm (Canutescu & Dunbrack, 2003), the Self-Organizing
algorithm (SOS) (Liu, Zhu, Rassokhin, & Agrafiotis, 2009), and the FALCm method (Lee,
Lee, Park, Coutsias, & Seok, 2010).

Table 2 shows the average of the best RMSD for the benchmarks of length 4, 8 and 12
as computed by the four programs. We report the results as given in Table 2 of Canutescu
and Dunbrack for the CCD, Table 1 of Liu et al. for SOS, Table II of Lee et al. for the
FALCm method, and the RMSD’s obtained adopting the settings for JMf that provided
the best results in the previous section (see also Subsection 5.1.5). It can be noted that our
results are in line with those produced by the other systems.

Loop Average (best) RMSD
Length CCD SOS FALCm JMf

4 0.56 0.20 0.22 0.27
8 1.59 1.19 0.72 0.93
12 3.05 2.25 1.81 1.58

Table 2: Comparison of loop sampling methods

The execution time we reported appear to be very competitive (e.g., if we considered
the results reported in Soto et al., 2008).

5.1.4 JM Parameters Analysis

In this section, we analyze the impact of the JM parameters on the quality of the best
solutions found and on the execution times. In particular, the aim of these experiments is
to shed light on the relationship between the JM constraint settings and the results.

In Figure 14, we analyze the impact of the kmax on the execution times (left) and on
the precision (right) of the filtering of the JM constraint. From top to bottom, we use
β = 60, 120, 360. The tests are performed over the protein loops of length 4 (see section
above), adopting as cluster parameters, r in {0.5, 1.0, 3.0, 5.0}, and kmin = 100. Each dot in
the plots represents the average of the best RMSD found by each predictions (left) and the
average execution time (right). The RMSD values tend to decrease for smaller clustering
parameters r and β and as the number of clusters increases, while the filtering time increases
as kmax increases.

In Figure 15 we study the relation between the RMSD and both the number of JMs that
cover a given target loop or protein and the Voxel-side parameter. For these experiments
we used the values {100, 250, 500, 800, 1000} for the kmax, we set r = 1, β = 120, and we
averaged the RMSDs values on the resulting sample set of structures. The relation between
the RMSD and number of JM as well as the average and worst computational times are
shown in Fig. 15 left. Here we use a medium-length loop taken from the protein 1XPC
(res. 216-230) and we vary the number of JMs that cover the loop (the side of the voxel
has been set to 3Å). From the figure we observe that increasing the number of JMs (i.e.
covering less amino acids with a single JM) the RMSD decreases but the computational
cost is higher. Notice that the best RMSD is given when the loop is covered by 4 JM
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Figure 14: Comparison of the best RMSD values and execution times at varying of the
kmax clustering parameter for β = 60 (top), 120 (center), 360 (bottom)
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Figure 15: Left: RMSD (best and average) and Time (average and worst) values increasing
the number of JM constraints that completely cover a target loop of length 15. Right:
Average (dotted line) and best (solid line) RMSD for the targets 1LE0 of length 12 (top),
1MXN of length 16 (medium), and 1FDF of length 25 (low). The JM-Voxel-side parameter
for the voxels of the clustering varies from 3 to 100. The JM kmax parameter varies from
100 to 1000. The targets are completely covered by multiple JM-constraints.

constraint (i.e., a JM constraint each four consecutive amino acids). As a rule of thumb
we suggest to use a JM constraint to cover from 3 to 4 consecutive amino acids since this
setting produces the best results within an acceptable time. In Fig. 15 right we report the
best RMSD (solid line) and the average RMSD (dotted line) of the structures found using
multiple JM constraints that cover sequences of 4 consecutive amino acids through the whole
target proteins. Namely, if the protein target has length n, we set the JM constraints from
i to i+ 3, where i = 3 · j, 0 ≤ j < n/3. For these experiments, we considered three proteins
of relatively short length, in order to obtain a complete exploration of the search space in
reasonable computational time: 1LE0 (length 12), 1MXN (length 16), and 1FDF (length
24). Moreover we used the values {3, 5, 10, 20, 30, 50, 100} for the side of the voxels used for
the clustering.

From the Figure 15 we observe that the voxel size (enabled by the uniqueseq) has an
impact on the clustering for values lower than 30Å (recall that these proteins have a diameter
less than 30Å). For voxel sides lower than 3Å we observe no substantial improvement in
terms of quality, while the time required by the solver to compute the solutions increases
exponentially.

5.1.5 Results Summary And Default Parameters

We now provide some guidelines that may be helpful to tune the JM parameters for a given
protein modeling problem. We suggest several levels of parametrization that might be used
according to the user needs with respect to running time or prediction accuracy. We stress
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that these are merely guidelines, outlined from our empirical evaluations, and that several
tests should be done to establish the desired tuning.

We suggest to set a JM to model a sequence of at least 3 amino acids and in general not
longer than 8, to payoff the computational load of the JM clustering. The default choice
for kmin is set to be the average size of the variable domains involved in a JM constraint,
while we suggest to set kmax to be at least as kmin and not greater than 10000. The latter,
together with the number of consecutive JM constraints, will have the greatest impact on the
computational cost and prediction accuracy. Computational costs will grow as the number
of consecutive JM increases, and at the same time it will also produce in general higher
accuracy. The same trend is exhibited by the growing kmax parameter. Table 3 illustrates
five basic settings that could be used incrementally to establish a trade off between running
times and prediction accuracy. The first level (Lev. 1) is associated to faster computational
times and lower accuracy while the last one (Lev. 5) is the slowest but also the most accurate.
The second column of the table indicates the length of the amino acid sequence modeled
by a single JM.

Lev. n.JM kmin kmax β r Speed Accuracy

1 8 |D| 500 120 5 ∗ ∗ ∗ ∗ ∗
2 8 |D| 1000 120 3 ∗ ∗ ∗ ∗ ∗
3 6 |D| 100 120 3 ∗ ∗ ∗ ∗ ∗
4 4 |D| 500 120 3 ∗ ∗ ∗ ∗ ∗
5 4 |D| 1000 120 1 ∗ ∗ ∗ ∗ ∗

Table 3: JM default parameters

5.2 An Application In Protein Structure Prediction

In the protein structure prediction problem, we model a generic backbone through multiple
JM constraints. In principle, an unique JM constraint can model the whole problem. As
in the previous cases, we split it into smaller parts, moreover, the presence of secondary
structure is a valid help in the placement of JM constraints that can handle loops between
each consecutive pair. A simple search can generate a pool of conformations, then energy
scoring can select the best candidate. We have used a statistical energy function developed
for the 5@ model, but any other energy function can be used instead.

In this section, we study the applicability of FIASCO to the protein structure prediction
problem. In particular, we consider prediction problems where the secondary structure
elements of the protein are given. Furthermore, in order to assess the potential structure,
we introduce an energy function—the same that we have adopted in previous studies, and
more precisely described in http://www.cs.nmsu.edu/fiasco.

For the modeling, we have used the information about the location and the type of
the secondary structure elements on the primary sequence provided directly by the Protein
Data Bank. We have imposed a sequence of JM constraints between every consecutive
pair of secondary structure elements. The number of consecutive JM constraints varied
according to the length of the unstructured sequence being modeled, covering at most 5
amino acids with a single JM constraint. In addition one JM constraint was imposed from
the first amino acid to the beginning of the first secondary structure element and another
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from the end of the last secondary structure element and the last amino acid (the tails of
the protein). The domains for the initial and end points of the JM constraints are the set of
all admissible points (a box large enough to contain the protein). In the search phase, the
“first” secondary structure is deterministically set in the space. Then the labeling proceeds
with the JM constraint attached to it leading to the next secondary structure and so on.
Tails are instantiated at the end.

The propagation of the constraints generates a set of admissible structures, that repre-
sents the possible folds of the target protein. From this set, we select the structure with
minimum energy; we extract also the structure with minimum RMSD, in order to evaluate
the quality of the energy function. For these tests we adopt the FREAD database. Table 4
reports the best energy values found by FIASCO. In the RMSD columns is reported the
corresponding RMSD associated to the conformation with best energy found by the solver.
The #JM column reports the total number of JM used to model each protein, together
with the maximum number of consecutive JM adopted to model a contiguous sequence of
amino acids (within parentheses).

Protein ID Len. # JM Energy RMSD Time (Min.)

1ZDD 35 4(2) −100513 2.05 11.42
2GP8 40 4(2) −138110 6.28 8.55
2K9D 44 5(2) −204693 2.52 2.69
1ENH 54 4(1) −309896 8.21 31.67
2IGD 60 7(2) −295882 10.50 26.47
1SN1 63 7(3) −358874 5.55 14.82
1AIL 69 4(1) −411077 4.59 4.46
1B4R 79 11(2) −313590 6.11 8.41
1JHG 100 7(1) −572950 4.51 4.50

Table 4: Ab initio prediction with FIASCO.

The results show that the quality of the predictions computed by FIASCO (6.3 as average
RMSD) is competitive (and, as shown in the following section, at par or better than what
produced by other methods). The results are particularly encouraging for proteins of longer
length, where the sampling of the search space aids in development of admissible structures.
The time required by FIASCO to completely explore the search space depends strongly on
the type and the mutual arrangement of secondary structure elements of the target. For
example, the protein 2K9D and the protein 1ENH have the same length, but FIASCO is
significantly faster on the first protein than on the second one. The same observation can
be made for the proteins 2IGD and 1SN1. The results reported in Table 4 are promising
and they suggest that this is a feasible approach to solve the ab initio prediction problem.
As a future work, we will explore the integration of local search techniques (e.g., large-
neighboring search), in order to sample the search space and to further decrease the time
needed to explore it.
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5.3 A Comparison of FIASCO with State-of-the-Art Constraint Solvers

In this section, we motivate our choice of designing an ad-hoc solver instead of using a
general-purpose constraint solver. In particular we provide a comparison between FIASCO
and state-of-the-art constraint solving. The results justify the choice of implementing a new
solver from scratch instead of using an available constraint programming library or a con-
straint programming language. The solver chosen for this comparison is Gecode (Gecode
Team, 2013), a very efficient solver and the winner of the most recent MiniZinc chal-
lenges (Stuckey, Becket, & Fischer, 2010).

Gecode has recently introduced (in version 4.0) the handling of floating point variables.
Nevertheless, since Gecode is the fastest solver for FD variables, we have first encoded
the PSP by discretizing fragments and positions. In particular, we multiplied each real
number by a scaling factor (100) to obtain integer values. Each spatial position is encoded
by a triple of variables, representing the coordinates of the point. Each operation (e.g.,
multiplications) applied to such variables requires re-scaling of the result; this unfortunately
leads to ineffective propagation. This is particularly evident when dealing with distance
constraints, that require the implementation of Euclidean distance between pairs of triples
of variables.

In order to understand the solvers capabilities to propagate constraints on the place-
ment of overlapping fragment we implemented three versions of the code, that considered
a different number of constraints, precisely:

1. An implementation that uses only JM constraint (JM only)

2. An implementation that adds the alldistant constraint and

3. An implementation that adds the alldistant and centroid constraints

In all cases we use a complete search (in particular, the clustering and tabling constraints
of lines 10 and 12–14 of Algorithm 2 are disabled).

In Table 5, we report the execution times required by FIASCO and by Gecode (with the
same considered constraints) to determine an increasing number of solutions, from 1, 000
to 1, 000, 000. These solutions are computed for the target protein 1ZDD which has length
35. Table 5 shows that the execution time of both solvers increases proportionally with the
number of solutions found. However, FIASCO is one order of magnitude faster than Gecode
in the unconstrained case, and two orders of magnitude faster in the other cases. The main
reason is that FIASCO is specifically developed to handle the finite domains and 3D point
variables, while these are approximated by FD variables in Gecode. Constraints on these
approximations propagate poorly and slowly. Moreover, the approximation of fragments
using finite domain variables introduces approximation errors, that grow during the search
phase (and consequently, less solutions are returned in the constrained cases). These errors
may result in final structures that are relatively imprecise when the coordinates of the atoms
are converted back into real values.

In Table 6, we consider a small sequence of four amino acids (SER TRP THR TRP—the
first four amino acids of the protein 1LE0), and we generate all solutions. We report the
values of the best and the average RMSD among the structures of the sets of solutions com-
puted using FIASCO and the Gecode implementation after a complete enumeration of the
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Number of FIASCO Gecode
solutions JM only alldistant alldistant + centroid JM only alldistant alldistant + centroid

1000 0.030 0.051 0.059 0.358 2.531 3.807
10000 0.312 0.476 0.612 2.571 21.056 35.370
100000 3.006 4.794 6.040 25.407 209.569 347.831
1000000 29.859 47.669 61.385 252.815 2186.83 3632.39

Table 5: Comparison of the execution times of FIASCO and Gecode, for increasing number
of solutions and with different sets of considered constraints.

domains. We can observe that FIASCO is significantly faster in exploring the search space,
moreover, the approximation introduces errors that leads to the loss of feasible solutions.

FIASCO Gecode
N. sol. Time (sec.) RMSD Avg. RMSD N. sol Time (sec.) RMSD Avg. RMSD

JM only 810000 20.493 0.167 1.570 810000 181.102 0.190 1.596
alldistant 805322 33.493 0.167 1.564 774463 252.974 0.190 1.591

alldistant + centroid 805322 38.953 0.167 1.564 169441 140.644 0.580 1.880

Table 6: Number of solutions, time, best RMSD, and average RMSD on the set of structures
found by FIASCO and Gecode after a complete enumeration of the solution space using
different constraints

We have encoded the same constraint satisfaction problem using the new version of
Gecode that allows to employ float variables. We labeled the finite domain variables that
allow to select fragments, while values for the point variables are obtained by constraint
propagation. Since constraint propagation of float variables is based on interval arithmetics,
it turns out that after few amino acids these intervals are too large for being able of re-
constructing the protein and or evaluating the energy value. For instance, after a complete
assignment of the variables related to fragments of protein 1ZDD, while the domains of the
float variables associated with the position of the first two amino acids are singletons, those
related to the tenth amino acids are intervals with size from one to two Å; even worse,
the domains of the atoms of the eleventh amino acids are unbounded. A further stage of
labeling of the float variables required computational time of orders of magnitude higher
than those reported in Table 6 for the finite domain Gecode implementation.

Constraint solvers like ECLiPSe (Cheadle, Harvey, Sadler, Schimpf, Shen, & Wal-
lace, 2003) and Choco (Choco Team, 2008) also support the mixed use of integer and
real variables. ECLiPSe is a Prolog-based language which handles integer and real vari-
ables together. However, the great number of matrix operations required in our appli-
cation does not fit well with a Prolog implementation. Furthermore, the current trend
of ECLiPSe is to replace a direct constraint solving with a translation to FlatZinc. In
the case of Choco, the current support of Real Variables is still under development (c.f.
http://choco.sourceforge.net/userguide.pdf—page 3). Things may change with the
next releases.

We also experimented with another constraint solver, by implementing the multi-body
constraints using the JaCoP library (JaCoP Team, 2012), in a similar way as done for
Gecode. Eventually, we tested the same protein used for the results reported in Table 5,
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and we did not observe any substantial difference in terms of execution time, from the
Gecode implementation.

In terms of protein structure prediction, the design of FIASCO has been influenced by
our own previous work on the TUPLES system (Dal Palù et al., 2011). TUPLES is also a
constraint solver for protein structure prediction, based on fragments assembly. Figure 16
compares the performance of TUPLES and FIASCO on the same set of proteins discussed
in Section 5.2. To make the comparison fair, we make use of the same energy function in
both systems and assume that the secondary structure elements are known. Note that there
are some important differences between the two systems. TUPLES is implemented using
constraint logic programming techniques, specifically, SICStus Prolog (Swedish Institute for
Computer Science, 2012); TUPLES does not make use of floating point variables; on the
other hand, TUPLES introduces a heuristic search mechanism based on large neighboring
search.

The results show that the quality of the predictions computed by FIASCO (6.3 as average
RMSD) is better than the quality of the predictions computed by TUPLES (9.4 as average
RMSD). The complete sampling of the search space allows us to obtain better results for
the proteins of longer length in the benchmark (≥ 63). Instead, for shorter proteins, we
obtain comparable results. The similarity of the quality depends on the use of the same
energy function for both the systems. Notice that the energy function used is designed for
the simpler model adopted in TUPLES (Cα–Cα). Moreover, TUPLES is based on a Prolog
implementation that does not provide floating point variables and hence each value must
be rounded and approximated. These aspects explain both the quality differences between
the RMSD and the Best RMSD found by FIASCO and the behavior for which for some
proteins (e.g., 1ZDD, 2GP8 ) the (energy) RMSD values are better in FIASCO even if their
corresponding energy (RMSD) values are higher than in TUPLES. The execution times of
FIASCO are significantly faster than TUPLES, in spite of FIASCO’s lack of a sophisticated
search heuristic.

We also performed a comparison with the state-of-the-art online Robetta predictor (Ra-
man, Vernon, Thompson, Tyka, Sadreyev, Pei, Kim, Kellogg, DiMaio, Lange, Kinch, Shef-
fler, Kim, Das, Grishin, & Baker, 2009) for the first four proteins of Table 6. We built
the dictionary for 3 and 9 amino acid long peptides through the Robetta interface, and we
disabled any homology inference, in order to maintain a fair comparison. The results are:
1ZDD computed in 21s with 5.92 RMSD, 2GP8 computed in 16s with 5.44 RMSD, 2K9D
computed in 22s with 4.65 RMSD, 1ENH computed in 39s with 2.74 RMSD. It can be noted
that our results are in line with Robetta predictor.

Let us conclude this section mentioning that the results reported in the previous section
(where we compared FIASCO with TUPLES) provide also an implicit comparison with an-
other off-the-shelf solver, the SICStus Prolog constraint logic programming solver (Swedish
Institute for Computer Science, 2012).

6. Conclusions

In this paper, we presented a novel constraint (joined-multibody) to model rigid bodies
connected by joints, with constrained degrees of freedom in the 3D space. We presented a
polynomial time approximated filtering algorithm of the joined-multibody constraint, that
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Figure 16: Comparison of RMSD and Execution Time between TUPLES and FIASCO
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exploits the geometrical features of the rigid bodies. In particular, the filtering algorithm
is combined with search heuristics that can produce a pool of admissible solutions that are
uniformly sampled. This allows for a direct control of the quality and number of solutions.
The filtering algorithm is based on a 3D clustering procedure that is able to cope with
a high variability of rigid bodies, while preserving the computational cost. The practical
advantages of the joined-multibody constraint are shown by an extensive set of real protein
simulations for two main categories: protein loop reconstruction and structure prediction
(ab-initio). The tests showed how the parameters of the constraint are able to control
effectively the quality and computational cost of the search. In conclusion, the constraint
solver FIASCO is able to model effectively various common protein case-studies analyses.
As future work, from the applications side, we plan to explore the protein loop closure
problem, with the use of specific databases and scoring functions. For the close problem of
protein flexibility, we plan to use FIASCO solver to generate the conformational space of
long scale movements for nuclear receptors (Dal Palù et al., 2012b). Finally, we plan to use
FIASCO in the general context of protein structure prediction with the combination of local
search methods and protein-ligand spatial constraints. From the constraint side, we plan
to integrate the JM filtering algorithm with other distance constraints, in order to generate
more accurate clusters; we plan to integrate spatial constraints inferred from bounds on
energy terms (e.g., the favorable contributions provided by pairing secondary structure
elements translate into energy bounds and distance constraints). We plan to investigate the
use of multiple JM constraints to model super-secondary structures placement, which are
useful to capture important functional and structural protein features. The latter can be
thought of as imposing several spatial path preferences to a given chain of points. Finally,
we intend to integrate the constraint solver with a visual interface to make it easily available
to Biologist and other practitioners and porting some parts of this tool within a GPU-based
framework as recently explored by Campeotto, Dovier, and Pontelli (2013).

Acknowledgments

We thank Federico Fogolari for his comments on several parts of this work. The authors
would like to express gratitude to JAIR reviewers that helped us to sensibly improve the
presentation.

References

Al-Bluwi, I., Simeon, T., & Cortes, J. (2012). Motion Planning Algorithms for Molecular
Simulations: A Survey. Computer Science Review, 6 (4), 125–143.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2007). Molecular
Biology of the Cell (5th Edition edition). Garland Science.

Anfinsen, C. B. (1973). Principles that Govern the Folding of Protein Chains. Science, 181,
223–230.

Apt, K. (2009). Principles of Constraint Programming. Cambridge University Press.

Backofen, R., & Will, S. (2006). A Constraint-Based Approach to Fast and Exact Structure
Prediction in 3-Dimensional Protein Models. Constraints, 11 (1), 5–30.

993
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