
Journal of Artificial Intelligence Research 35 (2009) 533-555 Submitted 12/08; published 07/09

Solving Weighted Constraint Satisfaction Problems with
Memetic/Exact Hybrid Algorithms

José E. Gallardo pepeg@lcc.uma.es

Carlos Cotta ccottap@lcc.uma.es

Antonio J. Fernández afdez@lcc.uma.es

Dept. Lenguajes y Ciencias de la Computación
Universidad de Málaga, ETSI Informática
Campus de Teatinos, 29071 – Málaga, Spain

Abstract

A weighted constraint satisfaction problem (WCSP) is a constraint satisfaction problem
in which preferences among solutions can be expressed. Bucket elimination is a complete
technique commonly used to solve this kind of constraint satisfaction problem. When the
memory required to apply bucket elimination is too high, a heuristic method based on
it (denominated mini-buckets) can be used to calculate bounds for the optimal solution.
Nevertheless, the curse of dimensionality makes these techniques impractical on large scale
problems. In response to this situation, we present a memetic algorithm for WCSPs in
which bucket elimination is used as a mechanism for recombining solutions, providing the
best possible child from the parental set. Subsequently, a multi-level model in which this
exact/metaheuristic hybrid is further hybridized with branch-and-bound techniques and
mini-buckets is studied. As a case study, we have applied these algorithms to the resolution
of the maximum density still life problem, a hard constraint optimization problem based
on Conway’s game of life. The resulting algorithm consistently finds optimal patterns for
up to date solved instances in less time than current approaches. Moreover, it is shown
that this proposal provides new best known solutions for very large instances.

1. Introduction

Many real problems can be formulated as constraint satisfaction problems (CSPs) in which
solutions are assignments to a set of variables (each variable taking values from a certain
domain), and in which there exists a collection of constraints that restrict the assignment of
particular values or combination of values; solving a CSP means finding a feasible assignment
of values to variables, i.e., one where all the constraints are satisfied. However, a wide range
of problems cannot be posed this way, either because the problem is over-constrained (and
thus there is no solution) or because the problem has multiple solutions and the objective is
to find the best one according to some optimality criterion. In both cases, the problem might
be handled from an optimization point of view by associating preferences to the constraints.
This kind of CSP in which preferences among constraints/solutions can be expressed are
called weighted constraint satisfaction problems (WCSPs) (Schiex, Fargier, & Verfaillie,
1995; Bistarelli, Montanari, & Rossi, 1997). Solving a WCSP means optimally satisfying
a set of weighted constraints. This clearly enlarges the scope of CSPs: many practical
problems can be modeled as WCSPs, such as for instance, radio frequency assignment,
scheduling and cellular manufacturing, among others (Cabon, de Givry, Lobjois, Schiex, &
Warners, 1999; Khemmoudj & Bennaceur, 2007; Nonobe & Ibaraki, 2001).

c©2009 AI Access Foundation. All rights reserved.

Gallardo, Cotta, & Fernández

Complete methods, like branch-and-bound (Lawler & Wood, 1966) and bucket elim-
ination (Dechter, 1999), a technique which originated in the early work of Bertele and
Brioschi (1972) on nonserial dynamic programming, are two of the most popular ways to
attack WCSPs. However, although the picture of a CSP is very general, it should be noted
that the inclusion of preferences in its constraints makes a particular WCSP very specific
and as a consequence WCSPs have to be tackled using very specialized algorithms that
were specifically designed (Freuder & Wallace, 1992; Verfaillie, Lemâıtre, & Schiex, 1996;
Kask & Detcher, 2001; Lemâıtre, Verfaillie, Bourreau, & Laburthe, 2001; Larrosa & Schiex,
2004; Gelain, Pini, Rossi, & Venable, 2007; Khemmoudj & Bennaceur, 2007; Marinescu
& Dechter, 2007). Moreover, general techniques require a very large computational effort
(in time, memory or both) to solve many WCSPs, due to their size and complexity, and
therefore are impractical in many cases. This can be alleviated using heuristic methods,
e.g., beam search (BS) (Barr & Feigenbaum, 1981) and mini-buckets (Dechter, 1997), for
branch-and-bound and bucket elimination respectively. However, in large scale problems,
the high computational cost is still evident.

In this context the use of alternative techniques must be considered to overcome the
limitations of general techniques; for instance, evolutionary algorithms (Bäck, 1996; Bäck,
Fogel, & Michalewicz, 1997) are powerful heuristics for optimization problems based on
the principles of natural evolution, which are flexible enough to be deployed in a wide
range of problems. However, this generality reduces their competitiveness, unless domain
knowledge is also incorporated. This need for exploiting domain knowledge in optimization
methods has been repeatedly shown (Wolpert & Macready, 1997; Culberson, 1998), and
memetic algorithms (Moscato & Cotta, 2003, 2007; Krasnogor & Smith, 2005) represent
one of the most successful responses to this need (Hart, Krasnogor, & Smith, 2005). This
paper explores different ways of hybridizing branch-and-bound/bucket elimination (and
their corresponding heuristic methods) and memetic algorithms, combining their search
capabilities in a synergetic way.

The hybrid techniques proposed here can be used as general problem solvers for WCSPs.
Note that they are essentially heuristic in nature and hence they cannot provide optimality
proofs for the solutions they obtain. Notice however that they can probably provide optimal
or near-optimal solutions to a wide range of WCSPs. Furthermore, these hybrid techniques
are less time-consuming than the general methods involved in them, and can thus be applied
to larger problem instances. In order to experimentally evaluate the hybrid techniques, we
have tackled the Maximum Density Still Life Problem, a very hard combinatorial optimiza-
tion problem which is also a prime example of a weighted constraint optimization problem.
No polynomial-time algorithm is known to solve this problem, although, to the best of our
knowledge, the problem has not yet been proven to be NP-hard. For these reasons, it is
not surprising that this problem has attracted the interest of the constraint-programming
community, and has been central in the development and assessment of sophisticated tech-
niques such as bucket elimination. Indeed, it constitutes an excellent test bed for different
optimization techniques, and has been included in the CSPLib1 repository. A web page2

keeps record of up-to-date results.

1. http://www.csplib.org

2. http://www.ai.sri.com/~nysmith/life

534

Solving WCSPs with Memetic/Exact Hybrid Algorithms

2. Preliminaries

In this section, we briefly introduce concepts and techniques that will be used in the rest
of the paper. To this end, we first define weighted constraint satisfaction problems, as well
as the techniques of bucket elimination and mini-buckets. Subsequently, we describe beam
search, a heuristic tree search algorithm derived from branch-and-bound. Finally, memetic
algorithms are presented. For the sake of notational simplicity, where appropriate we stick
to the notation of Larrosa et al. (2003, 2005).

2.1 Weighted Constraint Satisfaction Problems

A weighted constraint satisfaction problem (WCSP) (Schiex et al., 1995; Bistarelli et al.,
1997) is a constraint satisfaction problem (CSP) in which preferences among solutions can be
expressed. Formally, a WCSP can be defined by a tuple (X ,D,F), where D = {D1, · · · , Dn}
is a set of finite domains, X = {x1, · · · , xn} is a set of variables taking values from their finite
domains (Di is the domain of variable xi) and F is a set of cost functions (also called soft
constraints or weighted constraints) used to declare preferences among possible solutions.
Variable correctly assigned receive finite costs that express their degree of preference (the
lower the value the better the preference) and variables not correctly assigned receive cost
∞. Note that each f ∈ F is defined over a subset of variables, var(f) ⊆ X , called its scope.
The objective function F is defined as the sum of all functions in F , i.e., F =

∑
f∈F f .

The assignment of value vi ∈ Di to variable xi is noted xi = vi. A partial assignment
of m < n variables is a tuple t = (xi1 = v1, xi2 = v2, · · · , xim = vm) where ij ∈ {1, . . . , n}
are all different. A complete assignment of all variables with values in their domains that
satisfies every soft constraint (i.e., with a finite valuation for F) represents a solution to the
WCSP. The optimization goal is to find a solution that minimizes this objective function.

2.2 Bucket Elimination

Bucket elimination (BE) (Dechter, 1999) is a generic technique suitable for many automated
reasoning and optimization problems and, in particular, for solving WCSP. The functioning
of BE is based upon the following two operators over functions (Larrosa et al., 2005):

• the sum of two functions f and g, denoted (f + g), is a new function with scope
var(f)∪var(g) which returns for each tuple the sum of costs of f and g, i.e., (f+g)(t) =
f(t) + g(t).

• The elimination of variable xi from f , denoted f ⇓ xi, is a new function with scope
var(f) − {xi} which returns for each tuple t the minimum cost extension of t to xi,
(f ⇓ xi)(t) = minv∈Di{f(t · (xi = v))}, where t · (xi = v) means the extension of the
assignment t with the assignment of value v to variable xi. Observe that when f is a
unary function (i.e., it has arity one), a constant is obtained upon elimination of the
only variable in its scope.

Without losing of generality, let us assume a lexicographic ordering for the variables in
X , i.e., o = (x1, x2, · · · , xn). Figure 1 shows pseudo-code of the BE algorithm for solving
a WCSP instance, which returns the optimal cost in F and one optimal assignment in

535

Gallardo, Cotta, & Fernández

Bucket Elimination for a WCSP (X ,D, F)

function BE(X ,D,F)
1 : for i := n downto 1 do
2 : Bi := {f ∈ F | xi ∈ var(f)}
3 : gi := (

∑
f∈Bi

f) ⇓ xi

4 : F := (F ⋃{gi})−Bi

5 : end for
6 : t := ∅
7 : for i := 1 to n do
8 : v := argmina∈Di{(

∑
f∈Bi

f)(t · (xi = a))}
9 : t := t · (xi = v)

10 : end for
11 : return(F , t)

end function

Figure 1: The general template, adapted from Larrosa and Morancho (2003), of bucket
elimination for a WCSP (X ,D, F).

t. Observe that, initially, BE eliminates in decreasing order one variable xi ∈ X in each
iteration of the loop comprising lines 1-5. This is done by computing firstly the bucket Bi of
variable xi as the set of all cost functions in F having xi in their scope. Then, a new function
gi is defined as the sum of all these functions in Bi in which variable xi has been eliminated.
Finally, F is updated by removing the functions involving xi (i.e., those in Bi) and adding
the new function that does not contain xi. The consequence is that xi does not exist in F
but the value of the optimal cost is preserved. The elimination of x1 produces a function
with an empty scope (i.e., a constant) which is the optimal cost of the problem. Then, in
lines 6-10, BE generates an optimal assignment of variables by considering these in the order
imposed by o: this is done by starting from an empty assignment t and assigning to xi the
best value of the extension of t, with respect to the sum of functions in Bi (argmina{f(a)}
represents the value of a producing the minimum f(a)).

Note that BE has exponential space complexity because, in general, the result of sum-
ming functions or eliminating variables cannot be expressed intensionally by algebraic ex-
pressions and, as a consequence, intermediate results have to be collected extensionally in
tables. To be precise, the complexity of BE depends on the problem structure (as captured
by its constraint graph G) and the ordering o. According to Larrosa and Morancho (2003),
the complexity of BE along ordering o is time Θ(Q×n×dw∗(o)+1) and space Θ(n×dw∗(o)),
where d is the largest domain size, Q is the cost of evaluating cost functions (usually as-
sumed Θ(1)), and w∗(o) is the induced width of the graph along ordering o, which describes
the largest clique created in the graph by bucket elimination, and which corresponds to
the largest scope of a function recorded by the algorithm. Although finding the optimal
ordering is NP-hard (Arnborg, 1985), heuristics and approximation algorithms have been
developed for this task – check the work of Dechter (1999) for details.

536

Solving WCSPs with Memetic/Exact Hybrid Algorithms

2.3 Mini-Buckets

The main drawback of BE is that it requires exponential space to store functions exten-
sionally. When this complexity is too high, the solution can be approximated using the
mini-bucket (MB) approach presented by Dechter (1997) and Detcher and Rish (2003). Re-
call that, in order to eliminate variable xi, with its corresponding bucket Bi = {fi1 , . . . , fim},
BE calculates a new cost function gi = (

∑
f∈Bi

f) ⇓ xi, whose time and space complex-
ity increases with the cardinality of gi, i.e., with the size of the set ∪f∈Bivar(f) − {xi}.
This complexity can be decreased by approximating the function gi with a set of smaller-
arity functions. The basic idea is to partition bucket Bi into k so called mini-buckets
Bi1 , . . . , Bik , such that the number of variables in the scope of each Bij is bounded by
a parameter. Afterwards, a set of k cost functions with the reduced arity sought can be
defined as gij = (

∑
f∈Bij

f) ⇓ xi, j = 1 . . . k, and the required approximation to gi can be

computed as the sum g′i =
∑

16j6k gij =
∑

16j6k ((
∑

f∈Bij
f) ⇓ xi).

Note that the minimization computed in gi by the ⇓ operator has been migrated inside
the sum. Since, in general, for any two non-negative functions f1(x) and f2(x), minx(f1(x)+
f2(x)) > minxf1(x) + minxf2(x), it follows that g′i is a lower bound on gi. Therefore, if
variable elimination is performed using approximated cost functions, it provides a lower
bound for the optimal cost requiring less computation than BE. Notice that the described
approach provides a family of under-estimating heuristic functions whose complexity and
accuracy is parameterized by the maximum number of variables allowed in each mini-bucket.

2.4 Beam Search

Branch-and-bound (BB) (Lawler & Wood, 1966) is a general tree search method for solving
combinatorial optimization problems. Tree search methods are constructive, in the sense
that they work on partial solutions. In this way, tree search methods start with an empty
solution that is incrementally extended by adding components to it. The way that partial
solutions can be extended depends on the constraints imposed by the problem being solved.
The solution construction mechanism maps the search space to a tree structure, in such a
way that a path from the root of the tree to a leaf node corresponds to the construction
of a solution. In order to efficiently explore this search tree, BB algorithms maintain an
upper bound and estimate lower bounds for partially constructed solutions. Assuming a
minimization problem, the upper bound corresponds to the cost of the best solution found
so far. During the search process, a lower bound is computed for any partial solution
generated, estimating the cost of the best solution that can be constructed by extending
it. If this lower bound is greater than the current upper bound, solutions constructed by
extending it will not lead to an improvement, and thus all nodes descending from it can
be pruned from the search tree. Clearly, the capability of the algorithm for pruning the
search tree depends on the existence of an accurate lower bound, which should also be
computationally inexpensive in order to be practical.

Beam search (BS) (Barr & Feigenbaum, 1981) algorithms are incomplete derivates of BB
algorithms, and are thus heuristic methods. Essentially, BS works by extending every partial
solution from a set B (called the beam) in at most kext possible ways. Each new partial
solution so generated is stored in a set B’. When all solutions in B have been processed, the
algorithm constructs a new beam by selecting the best up to kbw (called the beam width)

537

Gallardo, Cotta, & Fernández

solutions from B’. Clearly, a way of estimating the quality of partial solutions, such as a
lower bound, is needed for this.

An interesting peculiarity of BS is the way it extends in parallel a set of different partial
solutions in several possible ways, making it a particularly suitable tree search method to
be used in a hybrid collaborative framework (it can be used to provide periodically promis-
ing partial solutions to a population-based search method such as a memetic algorithm).
Gallardo, Cotta, and Fernández (2007) have shown that this kind of hybrid algorithms
can provide excellent results for some combinatorial optimization problems. We will subse-
quently present a hybrid tree search/memetic algorithm for WCSPs based on this idea.

2.5 Memetic Algorithms

Evolutionary algorithms (EAs) are population-based metaheuristic optimization methods
inspired by biological evolution (Bäck et al., 1997). In order to explore the search space, the
EA maintains a set of solutions known as the population of individuals. These are usually
randomly initialized across the search space, although heuristics may also be used. After the
initialization, three different phases are iteratively performed until a termination condition
is reached: selection, reproduction (which encompasses recombination and mutation) and
replacement. In the context of EAs, the objective function assigning values to each solution
is termed a fitness function, and is used to guide the search.

Note that EAs are black box optimization procedures in the sense that no knowledge
of the problem (apart from the fitness function) is used. The need to exploit problem-
knowledge has been repeatedly shown (Wolpert & Macready, 1997; Culberson, 1998) how-
ever. Different attempts have been made to answer this need; Memetic algorithms (Moscato
& Cotta, 2003, 2007; Krasnogor & Smith, 2005) (MAs) are one of the most successful ap-
proaches to date (Hart et al., 2005). Like EAs, MAs are also population based metaheuris-
tics. The main difference is that the components of the population (sometimes termed
agents in MA terminology) are not passive entities. Rather, they are active entities that
cooperate and compete in order to find improved solutions.

There are many possible ways to implement MAs. The most common implementation
consists of combining an EA with a procedure to perform a local search on some or all
solutions in the population during the main generation loop (cf. Krasnogor & Smith, 2005).
Figure 2 shows the general outline of such a MA; pX , pm and arity respectively refer to
the recombination probability, mutation probability and recombination arity – i.e., number
of parents involved in recombination. It must be noted however that the MA paradigm
does not simply reduce itself to this particular scheme and there are different places (e.g.,
population initialization, genotype to phenotype mapping, evolutionary operators, etc.)
where problem specific knowledge can be incorporated. In this work, in addition to using
tabu search (Glover, 1989, 1990) (TS) as a local search procedure within the MA, we have
designed an “intelligent” recombination operator that uses a relaxation of bucket elimination
in order to find the best solution that can be constructed from a set of parents without
introducing implicit mutation (i.e., exogenous information).

538

Solving WCSPs with Memetic/Exact Hybrid Algorithms

Memetic Algorithm

function MA (pX , pm, arity)
1 : for i := 1 to popsize do
2 : pop[i] := Random solution(n)
3 : pop[i] := Local Search(pop[i])
4 : Evaluate(pop[i])
5 : end for
6 : while no timeout do
7 : for i := 1 to offsize do
8 : if recombination is performed (under pX) then
9 : for j := 1 to arity do

10 : parentj := Select(pop)
11 : end for
12 : offspring [i] := Recombine(parent1, parent2, . . . , parentarity)
13 : else
14 : offspring [i] := Select(pop)
15 : end if
16 : if mutation is performed (under pm) then
17 : offspring [i] := Mutate(offspring [i])
18 : end if
19 : offspring [i] := Local Search(offspring [i])
20 : Evaluate(offspring [i])
21 : end for
22 : pop := Replace(pop, offspring)
23 : end while

Figure 2: Pseudo code of a memetic algorithm (MA). Although different variants are possi-
ble with respect to this scheme, it broadly captures a typical algorithmic structure
of MAs.

3. A Multi-Level Memetic/Exact Hybrid Algorithm for WCSPs

WCSPs are very suitable for being tackled with evolutionary metaheuristics. Obviously,
the quality of the results will greatly depend on how well knowledge of the problem is
incorporated into the search mechanism. Our final goal is to present an algorithmic model
based on the hybridization of MAs with exact techniques at two levels: within the MA (as
an embedded operator), and outside it (in a cooperative model). Firstly, we will focus in the
next subsection on the first level of hybridization, which incorporates an exact technique
(namely BE) within the MA as an embedded recombination operator. Subsequently, we
will proceed to a second level of hybridization, in which the MA cooperates with a branch-
and-bound based beam search algorithm that further uses the technique of mini-buckets as
a lower bound (see Figure 3).

539

Gallardo, Cotta, & Fernández

GA

TS
Local

Search

BE

Crossover

BS

MA

MB
Lower
Bound Upper Bound

Promising Regions

Figure 3: Schematic description of the proposed hybrid algorithm.

3.1 Optimal recombination with BE

As previously mentioned, one of the phases that constitutes a typical MA is recombination
(i.e., lines 9-14 in Figure 2), in which some individuals in the population are combined with
the aim of obtaining improved individuals. For this purpose, different standard recombina-
tion operators have been proposed in the literature (see Bäck et al., 1997). Although those
blind operators are feasible from a computational point of view, they would perform poorly,
as no problem knowledge is being used. In the context of WCSPs, we can resort to BE in
order to achieve a sensible recombination of information.

Even though the performance of BE as an exact method for the resolution of WCSPs
may be better than basic search-based approaches, the corresponding time and space com-
plexity can still be very high, making this technique unsuitable for large instances. In the
following, we explain how BE can be used to implement an intelligent recombination oper-
ator for WCSPs. Such operator will implicitly explore the possible children of the solutions
being recombined, providing the best solution that can be constructed without introducing
implicit mutation, i.e., exogenous information (cf. Cotta & Troya, 2003). Note that this
use of bucket elimination is related to what is usually referred to as Large Neighborhood
Search (Ahuja, Ergun, Orlin, & Punnen, 2002).

For the sake of simplicity, let us assume that all variables in WCSP (X ,D, F) have the
same domain (i.e., D1 = · · · = Dn), and let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)
be two solutions to be recombined, and [zi] will be the value of variable zi. Our oper-
ator will calculate the best solution that can be obtained by combining variables from
x and y without introducing information not present in any of the parents. This can
be achieved by restricting the domain of variables in BE to values appearing in the con-
figurations being recombined. The recombination operator becomes BE(X , D,F), where
D = {[x1], · · · , [xn], [y1], · · · , [yn]}. Applying this approach to a WCSP in which variables
may have different domains would require previously separating the set of variables X into
subsets of variables sharing the same domain.

3.2 A Beam Search/MA Hybrid Algorithm

In this subsection, we describe a hybrid tree search/memetic algorithm for WCSPs. This
algorithm combines, in a collaborative way (Puchinger & Raidl, 2005), a BS algorithm and a
MA. As noted previously, BS works by extending in parallel a set of different partial solutions
in several possible ways, and thus can be used to provide promising partial solutions to a

540

Solving WCSPs with Memetic/Exact Hybrid Algorithms

Hybrid algorithm for a WCSP

function BS-MA (X ,D, kbw, kMA)
1 : sol := ∞
2 : B := { () }
3 : for i := 1 to n do
4 : B′ := {}
5 : for s ∈ B do
6 : for a ∈ Di do
7 : B′ := B′ ∪ {s · (xi = a)}
8 : end for
9 : end for

10 : B := select best kbw nodes from B′
11 : if (i > kMA) then
12 : initialize MA population with best popsize nodes from B′
13 : run MA
14 : sol := min (sol,MA solution)
15 : end if
16 : end for
17 : return sol

end function

Figure 4: Hybrid algorithm for a WCSP.

population based search method such as a MA. The goal is to exploit the capability of BS
for identifying potentially good regions of the search space, and also to exploit the MA to
explore these regions, synergistically combining these two different approaches.

The proposed hybrid algorithm, that executes BS and the MA in an interleaved way, is
depicted in Figure 4. In the pseudo-code, a (possibly partial) solution for a WCSP instance
is represented by a vector of variables s = (x1, x2, . . . , xi), i 6 n, where s · (xi = a) stands
for the extension of partial solution s by assigning value a to its i-th variable as noted
previously. The hybrid algorithm constructs a search tree, such that its leaves consist of
complete solutions and internal nodes at level i represent partially specified (up to the i-th
variable) solutions. This tree is heuristically traversed in a breadth first way using a BS
algorithm with beam width kbw (i.e., maintaining only the best kbw nodes at each level of
the tree). For the beam selection (line 10), a heuristic quality measure has to be defined for
partial solutions, whose value must be ∞ if the partial solution is unfeasible. The algorithm
starts (line 2) with a totally unspecified solution. Initially, only the BS part of the algorithm
is executed. During each iteration of BS (lines 3-17), a new variable is assigned for every
solution in the beam (line 7). The interleaved execution of the MA starts only when partial
solutions in the beam have at least kMA variables (line 11). For each iteration of BS, the
best popsize solutions in the beam are selected (using the quality measure described above)
to initialize the population of the MA (line 12). Since these are partial solutions, they must
be first converted into full solutions, e.g., by completing remaining variables randomly.

541

Gallardo, Cotta, & Fernández

After running the MA, its solution is used to update the incumbent solution (sol), and this
process is repeated until the search tree is exhausted.

3.3 Computing Tight Bounds with Mini-Buckets

The performance of the BS component of the algorithm described in the previous section
will depend on the quality of the heuristic function used to estimate partial solutions (line
10 of Figure 4). In order to compute a tight, yet computationally inexpensive, lower bound
for the remanning part of the solution we can resort to Mini-Buckets (MB). As described by
Kask and Detcher (2001), the intermediate functions created by applying the MB scheme
can be used as a general mechanism to compute heuristic functions that estimate the best
cost of yet unassigned variables in partial solutions. To this end, MB must be run as a
preprocessing stage, using the reverse order in which the search will instantiate variables.
The set of augmented buckets computed during this process can be used as estimations of
the best cost extension to partial solutions (check the work of Kask & Detcher, 2001, for
details).

4. Tackling the Maximum Density Still Life Problem

Previously proposed algorithms are general enough to be used in many WCSPs in which
BE can be executed. In this section we present an application case study on the maximum
density still life problem (MDSLP). This problem is defined in the context of the game of life
proposed by John H. Conway in the 60s and divulged by Martin Gardner (Gardner, 1970),
so let us first describe this game. It is played on an infinite checkerboard in which the only
player places checkers on some of its squares. Each square on the board is called a cell and
has eight neighbors; the eight cells that share one or two corners with it. A cell is alive if
there is a checker on it, and is dead otherwise. The contents of the board evolve iteratively,
in such a way that the state at time t determines the state at time t + 1 according to some
simple rules: (1) a live cell remains alive if it has two or three live neighbors, otherwise it
dies, and (2) a dead cell becomes alive it is has exactly three live neighbors.

The simple rules of the game of life can nevertheless generate an incredibly complex
dynamics. To better understand the MDSLP, let us define a stable pattern (also called a
still life) as a board configuration that does not change over time, and let the density of a
region be its percentage of living cells. The MDSLP in an n×n grid consists of finding a still
life of maximum density. Elkies (1998) has shown that, for infinite boards, the maximum
density is 1/2 (for finite size, no exact formula is known). In this paper, we are concerned
with the MDSLP and finite patterns, that is, finding maximal n× n still lifes.

4.1 Related Work

The MDSLP has been tackled in the literature using different approaches. Bosch and Trick
(2002) compared different formulations for the MDSLP using integer programming (IP) and
constraint programming (CP). Their best results were obtained with a hybrid algorithm
mixing the two approaches. They were able to solve the cases for n = 14 and n = 15
in about 6 and 8 days of CPU time respectively. Smith (2002) used a pure constraint
programming approach to address the problem. However, only instances up to n = 10

542

Solving WCSPs with Memetic/Exact Hybrid Algorithms

Table 1: Best experimental results reported by Bosch and Trick (2002) (CP/IP), Larrosa
and Morancho (2003) (BE) and Larrosa et al. (2005) (HYB-BE) for solving the
MDSLP. Time is indicated in seconds.

12 13 14 15 16 17 18 19 20
optimum 68 79 92 106 120 137 153 171 190

CP/IP 11536 12050 5× 105 7× 105

BE 1638 13788 105

HYB-BE 1 2 2 58 7 1091 2029 56027 2× 105

could be solved. The best results for this problem were reported by Larrosa and Morancho
(2003) and Larrosa et al. (2005), showing the usefulness of bucket elimination (BE), an
exact technique based on variable elimination and commonly used for solving constraint
satisfaction problems described in detail in Section 2.2. Their basic approach could solve
the problem for n = 14 in about 105 seconds. Further improvements increased the boundary
to n = 20 in about twice as much time. Recently, Cheng and Yap (2005, 2006) have tackled
the problem via the use of ad-hoc global case constraints, but their results are comparable
to IP/CP hybrids, and thus cannot be compared to the ones obtained previously by Larrosa
et al.

Table 1 summarizes experimental results for current approaches used to tackle the MD-
SLP, reporting the computational times of the hybrid IP/CP algorithm of Bosch and Trick
(2002), the BE approach of Larrosa and Morancho (2003) and the BE/search hybrid of
Larrosa et al. (2005). Although different computational platforms may have been used for
these experiments, the trends are very clear and give a clear indication of the potential of
the different approaches. It should be noted that all these techniques applied to the MDSLP
are exact approaches. They are inherently limited for increasing problem sizes and their
capabilities as anytime algorithms are unclear. To tackle this problem, we recently proposed
the use of hybrid methods combining exact and metaheuristic approaches. We considered
the hybridization of BE with evolutionary algorithms (a stochastic population-based search
method) endowed with tabu search (a local search method)(Gallardo, Cotta, & Fernández,
2006a). The resulting algorithm was a memetic algorithm (MA; see Section 2.5). It used
BE as a mechanism for recombining solutions, providing the best possible child from the
parental set. Experimental tests indicated that the algorithm provided optimal or near-
optimal results at an acceptable computational cost. Subsequently, we studied extended
multi-level models in which our previous hybrid algorithm was further hybridized with
a branch-and-bound derivative, namely beam search (BS)(Gallardo, Cotta, & Fernández,
2006b). Studies on the influence that variable clustering and multi-parent recombination
have on the performance of the algorithm were also conducted. The results indicated that
variable clustering was detrimental for this problem but also that multi-parent recombina-
tion improves the performance of the algorithm. To the best of our knowledge, these are
the only heuristic approaches applied to this problem to date.

In this section, our previous research on this problem is included and extended. As
new contributions, we have redone all the experiments using an improved implementation

543

Gallardo, Cotta, & Fernández

of the bucket elimination crossover operator, described in Section 3.1. Additionally, we
present a more extensive experimental analysis of our BS/MA hybrid described in (Gallardo
et al., 2006b), analyzing the sensitivity of its parameters. We also propose a new hybrid
algorithm that uses the technique of mini-buckets to further improve the lower bounds of
the partial solutions considered in the BS part of the hybrid algorithm. This new algorithm
is obtained from the hybridization, at different levels, of complete solving techniques (BE),
incomplete deterministic methods (BS and MB) and stochastic algorithms (MAs). An
experimental analysis shows that this new proposal consistently finds optimal solutions for
MDSLP instances up to n = 20 in considerably less time than all the previous approaches
reported in the literature. Finally, in order to test the scalability of our approach, this novel
hybrid algorithm has been run on very large instances of the MDSLP for which an optimal
solution is currently unknown. The results were very successful, as the algorithm performed
at the state-of-the-art level, providing solutions that are equal or better than the best
ones reported to date in the literature. For readability reasons, many particular technical
details of the different algorithms for the MDSLP are omitted, but are fully described in an
accompanying report (Gallardo, Cotta, & Fernández, 2008). At any rate, a model of the
MDSLP as a WCSP is presented in Appendix A.

4.2 A Memetic Algorithm for the MDSLP

First of all, we develop a MA for the MDSLP. In this MA, an n×n board is represented as
a binary n×n matrix. Based on the stratified gradient provided by a penalty based fitness
function that measures the number of violated constraints and their distance to feasibility
(prioritizing the former over the latter), an efficient local search strategy that explores the
set of solutions obtained by flipping exactly one cell in a configuration was devised. In order
to escape from local optima, a tabu-search scheme is used (line 19 in Figure 2).

The MA uses BE as a crossover operation as described in Section 3.1 (line 12 in Figure 2).
One interesting property of the operator described is that it is not limited to recombining
only two board configurations, but can instead be generalized to recombine any number of
them by considering domains consisting of all the values a variable has in any of the parents.
This multi-parental capability has also been explored in the rest of this paper.

To evaluate the usefulness of the described hybrid recombination operator, a set of ex-
periments for problem sizes from n = 12 up to n = 20 has been realized (recall that optimal
solutions to the MDSLP are known up to n = 20). The experiments have been performed
using a steady-state evolutionary algorithm (popsize = 100, pm = 1/n2, pX = 0.9, binary
tournament selection). With the aim of maintaining diversity, duplicated individuals are
not allowed in the population. Algorithms were run until an optimal solution was found or
a time limit exceeded. This time limit was set to 3 minutes for problem instances of size 12
and was gradually increased by 60 seconds for each size increment. For each algorithm and
each instance size, 20 independent runs have been made. All experiments in this paper have
been performed on a Pentium IV PC (2400MHz and 512MB RAM) under SuSE Linux.

The base algorithm is a MA using a two-dimensional version of SPX (single-point
crossover) for recombination, and endowed with tabu search for local improvement. This
algorithm is termed MATS, and has been shown to be capable of finding feasible solu-
tions systematically, solving to optimality instances with n < 15 (see MATS in Figure 5a).

544

Solving WCSPs with Memetic/Exact Hybrid Algorithms

Although the performance of the algorithm degrades for larger instances, it provides distri-
butions for the solutions whose average relative distance to the optimum is less than 5.29%
in all cases. This contrasts with the case of plain EAs, which are incapable of finding even
a feasible solution in most runs (Gallardo et al., 2006a).

12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um

MA−BE

MA−BE
1F

MA−BE
2F

MA−TS

(a)

12 13 14 15 16 17 18 19 20
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um

Arity=2
Arity=4
Arity=8
Arity=16

(b)

Figure 5: Relative distances to optimum for different (a) algorithms and (b) arities for sizes
ranging from 12 up to 20. In this and in all subsequent figures, each box summa-
rizes 20 runs, boxes comprise the second and third quartiles of the distribution
(i.e., the inner 50%), a horizontal line marks the median, a plus sign indicates
the mean, and circles indicate results further from the median than 1.5 times the
interquartile-distance.

MATS is firstly compared with MAs endowed with BE for performing recombination.
Since the use of BE for recombination has a higher computational cost than a simple blind
recombination, and there is no guarantee that recombining two infeasible solutions will
result in a feasible solution, we have defined three variants of the MAs:

• In the first one, called MA-BE, BE is always used to perform recombination.

• In the second, termed MA-BE1F, we require that at least one of the parents be feasible
in order to apply BE; otherwise blind recombination is used.

• In the last variant, identified as MA-BE2F, we require the two parents to be feasible,
thus being more restrictive in the application of BE.

By evaluating these variants, we intend to explore the computational tradeoffs involved
in the application of BE as an embedded component of the MA. For these algorithms,
mutation is performed prior to recombination in order to take advantage of good solutions
provided by BE. Figure 5a shows the empirical performance of the different algorithms.
Results show that MA-BE returns significantly better results than MATS. MA-BE2F can
find slightly better solutions than MA-BE on smaller instances (n ∈ {13, 15, 16}), but on

545

Gallardo, Cotta, & Fernández

larger instances the winner is MA-BE. It seems that the effort saved by not recombining
unfeasible solutions does not further improve the performance of the algorithm. Note also
that, for larger instances, MA-BE1F is better than MA-BE2F. This correlates well with the
fact that BE is used more frequently in the former than in the latter.

As mentioned in Section 3.1, the optimal recombination scheme we use can be readily ex-
tended to multi-parent recombination (Eiben, Raue, & Ruttkay, 1994): an arbitrary number
of solutions can contribute their constituent rows for constructing a new solution. Addi-
tional experiments were done to explore the effect of this capability of MA-BE. Figure 5b
shows the results obtained by MA-BE for a different number of parents being recombined
(arities 2, 4, 8 and 16). For arity = 2, the algorithm was able to find the optimum solution
for all instances except for n = 18 and n = 20 (the relative distance to the optimum for
the best solution found is less than 1.04% in these cases). Runs with arity = 4 cannot find
optimum solutions for the remaining instances, but note that the distribution improves in
some cases. Clearly, the performance of the algorithm deteriorates when combining more
than 4 parents due to the higher computational cost of BE. Variable clustering could be
used to alleviate this higher computational cost, but this results in performance degradation
since the coarser granularity of the pieces of information hinders information mixing (Cotta
& Troya, 2000; Gallardo et al., 2006b).

4.3 A BS/MA Hybrid Algorithm for the MDSLP

In this section we evaluate an instantiation of the BS and MA hybrid algorithm described in
Section 3.2 for the MDSLP, called BS-MA-BE. For the beam selection (line 10 in Figure 4),
a simple quality measure is defined for partial solutions, whose value is either ∞ if the
partial configuration is unstable, or its number of dead cells otherwise. The methodology
is the same as in Section 4.2 (20 executions are performed for each algorithm and instance
size), but arities for the MA are in {2, 3, 4}. The setting of the remaining parameters
is kbw = 2000 (preliminary tests indicated that this value was reasonable), and kMA ∈
{0.3 ·n, 0.5 ·n, 0.75 ·n}, i.e., the best 2000 nodes were kept on each level of the BS algorithm,
and 30%, 50% or 75% of the levels of the BS tree were initially descended before the MA
was run. With respect to termination conditions, each execution of the MA within the
hybrid algorithm consists of 1000 generations, and no time limits are imposed for the hybrid
algorithms, which are run for n iterations of the BS.

Figure 6a shows the results for different values of parameter kMA. In order to better
compare the distributions, the number of optimal solutions obtained by each algorithm
(out of 20 executions) is shown above each box plot. For kMA = 0.3 · n, the performance of
the resulting algorithm improves significantly over the original MA. Note that BS-MA-BE,
using an arity of 2 parents, is able to find the optimum for all cases except for n = 18
(this instance is solved with arity = 4). All distributions for different instance sizes are
significantly improved. For n < 17 and arity ∈ {2, 3, 4}, the algorithm consistently finds
the optimum in all runs. For other instances, the solution provided by the algorithm is
always within 1.05% of the optimum, except for n = 18, for which the relative distance to
the optimum for the worst solution is 1.3%. The other two charts show that, in general,
the performance of the algorithm deteriorates with increasing values of the kMA parameter.
This may be due to the low quality of the bounds used in the BS part.

546

Solving WCSPs with Memetic/Exact Hybrid Algorithms

(a)

0

0.5

1

1.5

2

2.5

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

1 1 0

0 0 0

3 9 10

0

1

0

k
MA

 = 0.75 ⋅ n

Arity=2
Arity=3
Arity=4

0

0.5

1

1.5

2

2.5

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

2 0 1

0 0 0

10 7 10

0 5

1

%
 d

is
ta

nc
e

to
 o

pt
im

um

k
MA

 = 0.50 ⋅ n

12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

2 2 1

0 0 3

11 13 14

4 2 6

instance size

k
MA

 = 0.30 ⋅ n

(b)

0

250

500

750

k
MA

 = 0.75 ⋅ n
Arity=2
Arity=3
Arity=4

0

250

500

750

1000

1250

1500

T
im

e
to

 b
es

t s
ol

ut
io

n(
s)

k
MA

 = 0.50 ⋅ n

12 13 14 15 16 17 18 19 20
0

250

500

750

1000

1250

1500

1750

2000

instance size

k
MA

 = 0.30 ⋅ n

Figure 6: (a) Relative distances to optimum and (b) time to best solution for different
arities for BS-MA-BE and KMA ∈ {0.3 ·n, 0.5 ·n, 0.75 ·n}, for sizes ranging from
12 up to 20. The numbers above each box indicate how many times the optimal
solution was found.

Regarding execution times, Figure 6b shows time distributions (in seconds) to reach
the best solution needed by the algorithms. Although BS-MA-BE requires more time than
MA-BE, the time needed remains reasonable for these instances, and is always less than
2000 seconds. Note also how the execution time increases with the arity, as more time is
needed by the MA to perform BE in the crossover operator. On the other hand, execution
time decreases for larger values of kMA as the number of executions of the MA decreases,
although, as we have already remarked, the quality of the solutions worsens.

4.4 Improving the Lower Bound using MB for the MDSLP

The simple quality measure for beam selection used in the previous section depends solely on
the part of the solution that is already constructed. In this section, we will experimentally
study the use of the MB technique to compute a tight, yet computationally inexpensive,

547

Gallardo, Cotta, & Fernández

lower bound for the remanning part of the configuration with the aim of improving the
performance of the BS part of the hybrid algorithm. Basically, the idea is to cluster all cells
in the same row of the board in a metavariable. These metavariables can be partitioned
into M columns with ≈ n/M cells each. Finally, we can resort to MB to estimate best cost
extensions to a partial board configuration by considering only each of the columns. By
summing estimations for all column extensions, a bound on the best board extension to a
partial solution is obtained. In this section, we have experimented with M = 3 (i.e., three
columns for each row), although if the complexity is still too high, the same approach can
be used to reduce it further, by considering more columns.

(a)

12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

18

20 20

13 19

20

6 13 19

16 18

20

instance size

k
MA

 = 0.30 ⋅ n

(b)

0

0.5

1

1.5

2

2.5

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

16

20 20

13 18 19 4 13 16

19

20 20

%
 d

is
ta

nc
e

to
 o

pt
im

um

k
MA

 = 0.50 ⋅ n

(c)

0

0.5

1

1.5

2

2.5

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

16 14 16 14 13 18 3 12 19

20

19

20

k
MA

 = 0.75 ⋅ n

Arity=2
Arity=3
Arity=4

(d)

12 13 14 15 16 17 18 19 20
0

250

500

750

T
im

e
to

 b
. s

ol
(s

)

instance size

k
MA

 = 0.75 ⋅ n
Arity=2
Arity=3
Arity=4

Figure 7: (a)-(c) Relative distances to the optimum using different arities for
BS-MA-BE-MB and KMA ∈ {0.3 · n, 0.5 · n, 0.75 · n}, for sizes ranging from
12 up to 20. (d) Time (in seconds) to best solution for different arities for
BS-MA-BE-MB and kMA = 0.75 · n, for sizes ranging from 12 up to 20.

Experiments were repeated for the hybrid algorithm equipped with the new lower bound,
BS-MA-BE-MB. Figure 7a-7c shows the results of these experiments for values of kMA ∈
{0.3 · n, 0.5 · n, 0.75 · n}. The algorithm finds the optimum for all instances and arities and
the relative distance to the optimum for the worst solution found is less than 1.05% in all
cases. The best results are obtained with arity = 4, although this requires slightly more
execution time. Note also how BS-MA-BE-MB is less sensitive to the setting of parameter
kMA, which means that execution times can be reduced considerably using a large value for
this parameter (see Figure 7d). The particular combination of parameters kMA = 0.75 · n
and arity = 4 provides excellent results at a lower computational cost, as execution times
are always below 570 seconds for n 6 20. As a comparison, recall that the only approach in
the literature that can solve these instances – described by Larrosa et al. (2005) – requires
over 33 minutes for n = 18, 15 hours for n = 19 and 2 days for n = 20, and that other
approaches are unaffordable for n > 15. Note however that these times correspond to a
computational platform different to ours. In order to make a fairer comparison, we executed

548

Solving WCSPs with Memetic/Exact Hybrid Algorithms

the algorithm of Larrosa et al. 3 in our platform. In this case, it required 1867 seconds
(i.e., more than 31 minutes) in order to solve the n = 18 instance, and more than 1 day and
18 hours to solve the n = 20 instance. These values are very close to the times reported
by Larrosa et al. (2005), and hence indicate that the computational platforms are fairly
comparable.

22 24 26 28
−1

−0.5

0

0.5

1

1.5

instance size

%
 d

is
ta

nc
e

Arity=2
Arity=3
Arity=4

Figure 8: Relative distances to best known solutions using different arities for
BS-MA-BE-MB and kMA = 0.3 · n, for very large instances (i.e., sizes of 22,
24, 26, and 28). Note the improvement of best known solutions for sizes 24 and
26.

Figure 9: New best known maximum density still lifes for n ∈ {24, 26}.

Table 2: Optimal solutions for the SMDLP.

n 12 13 14 15 16 17 18 19 20 22 24 26 28
opt 68 79 92 106 120 137 154 172 192 232 276 326 378

4.5 Results on Very Large Instances

As already mentioned, there is currently no approach available to tackle the MDSLP for
n > 20. Larrosa et al. (2005) tried their algorithm for n = 21 and n = 22, but they could

3. Available at http://www.lsi.upc.edu/~larrosa/publications/LIFE-SOURCE-CODE.tar.gz . Time for
n = 19 could not be obtained as the code provided by Larrosa et al. can only be used with even sized
instances.

549

Gallardo, Cotta, & Fernández

not solve any of those instances within a week of CPU. For these very large instances, only
solutions to some relaxations of the problem are known. One of these relaxations, known
as the symmetrical maximum density still life problem (SMDSLP), was proposed by Bosch
and Trick (2002), and consists of considering only symmetric boards (either horizontally or
vertically) which reduces the search space from 2n2

to 2ndn/2e.
BE alone can find vertically symmetric still lifes, by considering as variable domains

sets that contain only symmetric rows. Larrosa and Morancho (2003) and Larrosa et al.
(2005) used this algorithm to solve the SMDSLP for the instances considered so far in this
paper (i.e., for n ∈ {12 . . 20}), as well as for very large instances (i.e., n ∈ {22, 24, 26, 28}).
The results are summarized in Table 2, which shows for each instance size the optimal
symmetrical solution (as the number of dead cells). Clearly, the cost of optimal symmetric
still lifes are upper bounds for the MDSLP, which can additionally be observed to be very
tight for n 6 20. Results for n > 20 are currently the best known solutions for these
instances.

We also run our algorithm (BS-MA-BE-MB) for these very large instances (i.e., n ∈
{22, 24, 26, 28}), and compare our results to symmetrical solutions for these instances. Re-
sults (displayed in Figure 8) show that our algorithm is able to find two new best known
solutions for the MDSLP, namely for n = 24 and n = 26. There are 275 and 324 dead
cells respectively in the new solutions. These solutions are pictured in Figure 9. It is
also worth noting that our algorithm could also find a solution with 325 dead cells for the
n = 26 instance. For the other instances, our algorithm could reach the best known solu-
tions consistently. The computation of mini-Buckets for these very large instances is done
by considering four clustered cost functions for variables in each row of the board, as the
complexity when using three cost functions was still too high.

5. Conclusions

Many problems can be modeled as WCSPs. One exact technique that has been used to
tackle such problems is BE. However, the high space complexity of BE as an exact technique,
makes this approach impractical for large instances. In this case, one can resort to mini-
buckets to get an approximate solution, although the complexity can again be large. In
this work, we have presented several proposals for the hybridization of BE and MB with
memetic algorithms and beam search in order to get effective heuristics and have shown
that they represent very promising models.

We have experimentally evaluated our model with the MDSLP, an excellent example of
WCSP. Its highly constrained nature is typical in many optimization scenarios. The diffi-
culty of solving this problem illustrates the limitations of classical optimization approaches,
and highlights the capabilities of the proposed approaches. Indeed, the experimental re-
sults have been very positive, solving large instances of the MDSLP to optimality. Among
the different models presented, we must distinguish a new algorithm resulting from the
hybridization, at different levels, of complete solving techniques (i.e., bucket elimination),
incomplete deterministic methods (i.e., beam search and mini-buckets) and stochastic algo-
rithms (i.e., memetic algorithms). This algorithm empirically produces good-quality results,
not only solving to optimality very large instances of the constrained problem in a relatively
short time, but also providing new best known solutions in some large instances.

550

Solving WCSPs with Memetic/Exact Hybrid Algorithms

As future work, we plan to consider complete versions of the hybrid algorithm. This
involves the use of appropriate data structures to store not yet considered but promising
branch-and-bound nodes. While the memory requirements will of course grow enormously
with the size of the problem instance considered, it will be interesting to analyze the com-
putational tradeoffs of the algorithm as an anytime technique.

Acknowledgments

We would like to thank Javier Larrosa for his valuable comments, which helped us to improve
significantly a preliminary version of this paper. Thanks are also due to the reviewers for
their constructive comments. This work has been partially supported by Spanish MCInn
under grant TIN2008-05941 (Nemesis).

Appendix A. The MDSLP as a WCSP

As shown by Larrosa and Morancho (2003) and Larrosa et al. (2005), the MDSLP can be
well formulated as a WCSPs. To this end, an n×n board configuration can be represented
by an n-dimensional vector (r1, r2, . . . , rn). Each vector component encodes (as a binary
string) a row, so that the j-th bit of row ri (noted rij) represents the state of the j-th cell
of the i-th row (a value of 1 represents a live cell and a value of 0 a dead cell).

Two functions over rows will be useful to describe the constraints that must be satisfied
by a valid configuration. The first one,

zeroes(a) =
∑

16i6n

(1 − ai), (1)

returns the number of dead cells in a row (i.e., the number of zeroes in binary string a).
The second one,

Adjs(a)= Adjs ′(a, 1 , 0) (2)

Adjs ′(a, i , l)=





l, i > n
Adjs ′(a, i + 1 , l + 1), ai = 1
max(l,Adjs ′(a, i + 1 , 0)), ai = 0,

computes the maximum number of adjacent living cells in row a. We also introduce a ternary
predicate, Stable(ri−1 , r , ri+1), which takes three consecutive rows in a board configuration
and is satisfied if, and only if, all cells in the central row are stable (i.e., all cells in row r
will remain unchanged in the next iteration of the game):

Stable(a, b, c)=
∧

16i6n S(a, b, c, i) (3)

S(a, b, c, i)=
{

2 6 η(a, b, c, i) 6 3, bi = 1
η(a, b, c, i) 6= 3, bi = 0

η(a, b, c, i)=
∑

max(1,i−1)6j6min(n,i+1)(aj + bj + cj)− bi,

where η(a, b, c, i) is the number of living neighbors of cell bi, assuming a and c are the rows
above and below row b.

551

Gallardo, Cotta, & Fernández

The MDSLP can now be formulated as a WCSP using n cost functions fi, i ∈ {1 . . n}.
Accordingly, fn is binary with scope the last two rows of the board (var(fn) = {rn−1, rn})
and is defined as:

fn(a, b)=
{∞, ¬Stable(a, b, 0) ∨Adjs(b) > 2

zeroes(b), otherwise.
(4)

The first line checks that all cells in row rn are stable, whereas the second one checks that
no new cells are produced below the n×n board. Note that any pair of rows representing an
unstable configuration is assigned a cost of ∞, whereas a stable one is assigned its number
of dead cells (to be minimized).

For i ∈ {2 . . n − 1}, corresponding fi cost functions are ternary with scope var(fi) =
{ri−1, ri, ri+1} and are defined as:

fi(a, b, c)=
{∞, ¬Stable(a, b, c) ∨ (a1 = b1 = c1 = 1) ∨ (an = bn = cn = 1)

zeroes(b), otherwise.
(5)

In this case, boundary conditions are checked to the left and right of the board. As regards
cost function f1, it is binary with scope the first two rows of the board (var(f1) = {r1, r2})
and is specified similarly to fn:

f1(b, c)=
{∞, ¬Stable(0 , b, c) ∨Adjs(b) > 2

zeroes(b), otherwise.
(6)

References

Ahuja, R. K., Ergun, O., Orlin, J. B., & Punnen, A. P. (2002). A survey of very large-scale
neighborhood search techniques. Discrete Appl. Math., 123 (1-3), 75–102.

Arnborg, S. (1985). Efficient algorithms for combinatorial problems on graphs with bounded
decomposability - a survey. BIT, 2, 2–23.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York NY.

Bäck, T., Fogel, D., & Michalewicz, Z. (1997). Handbook of Evolutionary Computation.
Oxford University Press, New York NY.

Barr, A., & Feigenbaum, E. (1981). Handbook of Artificial Intelligence. Morhan Kaufmann,
New York NY.

Bertele, U., & Brioschi, F. (1972). Nonserial Dynamic Programming. Academic Press, New
York NY.

Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint satisfaction and
optimization. Journal of the ACM, 44 (2), 201–236.

Bosch, R., & Trick, M. (2002). Constraint programming and hybrid formulations for three
life designs. In International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, CP-AI-OR02, pp.
77–91.

552

Solving WCSPs with Memetic/Exact Hybrid Algorithms

Cabon, B., de Givry, S., Lobjois, L., Schiex, T., & Warners, J. P. (1999). Radio link
frequency assignment. Constraints, 4 (1), 79–89.

Cheng, K. C. K., & Yap, R. H. C. (2005). Ad-hoc global constraints for life. In van Beek,
P. (Ed.), Principles and Practice of Constraint Programming – CP’2005, Vol. 3709 of
Lecture Notes in Computer Science, pp. 182–195, Berlin Heidelberg. Springer.

Cheng, K. C. K., & Yap, R. H. C. (2006). Applying ad-hoc global constraints with the case
constraint to still-life. Constraints, 11, 91–114.

Cotta, C., & Troya, J. (2000). On the influence of the representation granularity in heuristic
forma recombination. In Carroll, J., Damiani, E., Haddad, H., & Oppenheim, D.
(Eds.), ACM Symposium on Applied Computing 2000, pp. 433–439. ACM Press.

Cotta, C., & Troya, J. (2003). Embedding branch and bound within evolutionary algorithms.
Applied Intelligence, 18(2), 137–153.

Culberson, J. (1998). On the futility of blind search: An algorithmic view of “no free lunch”.
Evolutionary Computation, 6 (2), 109–128.

Dechter, R. (1997). Mini-buckets: A general scheme for generating approximations in au-
tomated reasoning. In 15th International Joint Conference on Artificial Intelligence,
pp. 1297–1303, Nagoya, Japan.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113 (1-2), 41–85.

Detcher, R., & Rish, I. (2003). Mini-buckets: A general scheme for bounded inference.
Journal of the ACM, 50 (2), 107–153.

Eiben, A., Raue, P.-E., & Ruttkay, Z. (1994). Genetic algorithms with multi-parent re-
combination. In Davidor, Y., Schwefel, H.-P., & Männer, R. (Eds.), Parallel Problem
Solving From Nature III, Vol. 866 of Lecture Notes in Computer Science, pp. 78–87,
Berlin Heidelberg. Springer.

Elkies, N. D. (1998). The still-life problem and its generalizations. In Engel, P., & Syta, H.
(Eds.), Voronoi’s Impact on Modern Science, Book 1, pp. 228–253. Institute of Math,
Kyiv.

Freuder, E. C., & Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelli-
gence, 58 (1-3), 21–70.

Gallardo, J. E., Cotta, C., & Fernández, A. J. (2008). Finding still lifes with memetic/exact
hybrid algorithms. CoRR, Available at http://arxiv.org/abs/0812.4170.

Gallardo, J., Cotta, C., & Fernández, A. (2007). On the hybridization of memetic algo-
rithms with branch-and-bound techniques. IEEE Transactions on Systems, Man and
Cybernetics, part B, 37 (1), 77–83.

Gallardo, J. E., Cotta, C., & Fernández, A. J. (2006a). A memetic algorithm with bucket
elimination for the still life problem. In Gottlieb, J., & Raidl, G. (Eds.), Evolutionary
Computation in Combinatorial Optimization, Vol. 3906 of Lecture Notes in Computer
Science, pp. 73–85, Berlin Heidelberg. Springer.

553

Gallardo, Cotta, & Fernández

Gallardo, J. E., Cotta, C., & Fernández, A. J. (2006b). A multi-level memetic/exact hybrid
algorithm for the still life problem. In Runarsson, T. P., et al. (Eds.), Parallel Problem
Solving from Nature IX, Vol. 4193 of Lecture Notes in Computer Science, pp. 212–221,
Berlin Heidelberg. Springer.

Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game.
Scientific American, 223, 120–123.

Gelain, M., Pini, M. S., Rossi, F., & Venable, K. B. (2007). Dealing with incomplete pref-
erences in soft constraint problems. In Bessiere, C. (Ed.), Principles and Practice of
Constraint Programming – CP 2007, Vol. 4741 of Lecture Notes in Computer Science,
pp. 286–300, Berlin Heidelberg. Springer.

Glover, F. (1989). Tabu search – part I. ORSA Journal on Computing, 1 (3), 190–206.

Glover, F. (1990). Tabu search – part II. ORSA Journal on Computing, 2 (1), 4–32.

Hart, W., Krasnogor, N., & Smith, J. (2005). Recent Advances in Memetic Algorithms, Vol.
166 of Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg.

Kask, K., & Detcher, R. (2001). A general scheme for automatic generation of search
heuristics from specification dependencies. Artificial Intelligence, 129, 91–131.

Khemmoudj, M. O. I., & Bennaceur, H. (2007). Valid inequality based lower bounds for
WCSP. In Bessiere, C. (Ed.), Principles and Practice of Constraint Programming
– CP 2007, Vol. 4741 of Lecture Notes in Computer Science, pp. 394–408, Berlin
Heidelberg. Springer.

Krasnogor, N., & Smith, J. (2005). A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9 (5),
474–488.

Larrosa, J., & Morancho, E. (2003). Solving ‘still life’ with soft constraints and bucket
elimination. In Principles and Practice of Constraint Programming – CP’2003, Vol.
2833 of Lecture Notes in Computer Science, pp. 466–479, Berlin Heidelberg. Springer.

Larrosa, J., Morancho, E., & Niso, D. (2005). On the practical use of variable elimination
in constraint optimization problems: ‘still life’ as a case study. Journal of Artificial
Intelligence Research, 23, 421–440.

Larrosa, J., & Schiex, T. (2004). Solving weighted CSP by maintaining arc consistency.
Artificial Intelligence, 159 (1-2), 1–26.

Lawler, E., & Wood, D. (1966). Branch and bounds methods: A survey. Operations Research,
4 (4), 669–719.

Lemâıtre, M., Verfaillie, G., Bourreau, E., & Laburthe, F. (2001). Integrating algorithms
for weighted CSP in a constraint programming framework. In International Workshop
on Modelling and Solving Problems with Soft Constraints, Paphos, Cyprus.

Marinescu, R., & Dechter, R. (2007). Best-first and/or search for graphical models. In
Twenty-Second AAAI Conference on Artificial Intelligence, pp. 1171–1176, Vancou-
ver, Canada. AAAI Press.

Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms. In Handbook
of Metaheuristics, pp. 105–144. Kluwer Academic Press, Boston, Massachusetts, USA.

554

Solving WCSPs with Memetic/Exact Hybrid Algorithms

Moscato, P., & Cotta, C. (2007). Memetic algorithms. In González, T. (Ed.), Handbook
of Approximation Algorithms and Metaheuristics, chap. 27. Chapman & Hall/CRC
Press.

Nonobe, K., & Ibaraki, T. (2001). An improved tabu search method for the weighted
constraint satisfaction problem. INFOR, 39 (2), 131–151.

Puchinger, J., & Raidl, G. (2005). Combining metaheuristics and exact algorithms in
combinatorial optimization: a survey and classification. In Mira, J., & Álvarez, J.
(Eds.), Artificial Intelligence and Knowledge Engineering Applications: a Bioinspired
Approach, Vol. 3562 of Lecture Notes in Computer Science, pp. 41–53, Berlin Heidel-
berg. Springer.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: hard
and easy problems. In 14th International Joint Conference on Artificial Intelligence,
pp. 631–637, Montreal, Canada.

Smith, B. M. (2002). A dual graph translation of a problem in ‘life’. In Hentenryck, P. V.
(Ed.), Principles and Practice of Constraint Programming - CP’2002, Vol. 2470 of
Lecture Notes in Computer Science, pp. 402–414, Berlin Heidelberg. Springer.

Verfaillie, G., Lemâıtre, M., & Schiex, T. (1996). Russian doll search for solving constraint
optimization problems. In Thirteenth National Conference on Artificial Intelligence
and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI / IAAI
96, pp. 181–187. AAAI Press / The MIT Press.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1 (1), 67–82.

555

