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Abstract

Machine learning techniques are gaining prevalence in the production of a wide range of
classifiers for complex real-world applications with nonuniform testing and misclassification
costs. The increasing complexity of these applications poses a real challenge to resource
management during learning and classification. In this work we introduce ACT (anytime
cost-sensitive tree learner), a novel framework for operating in such complex environments.
ACT is an anytime algorithm that allows learning time to be increased in return for lower
classification costs. It builds a tree top-down and exploits additional time resources to
obtain better estimations for the utility of the different candidate splits. Using sampling
techniques, ACT approximates the cost of the subtree under each candidate split and favors
the one with a minimal cost. As a stochastic algorithm, ACT is expected to be able to
escape local minima, into which greedy methods may be trapped. Experiments with a
variety of datasets were conducted to compare ACT to the state-of-the-art cost-sensitive
tree learners. The results show that for the majority of domains ACT produces significantly
less costly trees. ACT also exhibits good anytime behavior with diminishing returns.

1. Introduction

Traditionally, machine learning algorithms have focused on the induction of models with
low expected error. In many real-word applications, however, several additional constraints
should be considered. Assume, for example, that a medical center has decided to use ma-
chine learning techniques to build a diagnostic tool for heart disease. The comprehensibility
of decision tree models (Hastie, Tibshirani, & Friedman, 2001, chap. 9) makes them the pre-
ferred choice on which to base this tool. Figure 1 shows three possible trees. The first tree
(upper-left) makes decisions using only the results of cardiac catheterization (heart cath).
This tree is expected to be highly accurate. Nevertheless, the high costs and risks associ-
ated with the heart cath procedure make this decision tree impractical. The second tree
(lower-left) dispenses with the need for cardiac catheterization and reaches a decision based
on a single, simple, inexpensive test: whether or not the patient complains of chest pain.
Such a tree would be highly accurate: most people do not experience chest pain and are
indeed healthy. The tree, however, does not distinguish between the costs of different types
of errors. While a false positive prediction might result in extra treatments, a false negative
prediction might put a person’s life at risk. Therefore, a third tree (right) is preferred, one
that attempts to minimize test costs and misclassification costs simultaneously.
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Figure 1: Three possible decision trees for diagnosis of heart diseases. The upper-left tree
bases its decision solely on heart cath and is therefore accurate but prohibitively
expensive. The lower-left tree dispenses with the need for heart cath and reaches
a decision using a single, simple, and inexpensive test: whether or not the patient
complains of chest pain. Such a tree would be highly accurate but does not
distinguish between the costs of the different error types. The third (right-hand)
tree is preferable: it attempts to minimize test costs and misclassification costs
simultaneously.
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Figure 2: Left: an example of a difficulty greedy learners might face. Right: an example of
the importance of context-based feature evaluation.

Finding a tree with the lowest expected total cost is at least NP-complete.1 As in the
cost insensitive case, a greedy heuristic can be used to bias the search towards low-cost trees.
Decision Trees with Minimal Cost (DTMC), a greedy method that attempts to minimize

1. Finding the smallest consistent tree, which is an easier problem, is NP-complete (Hyafil & Rivest, 1976).
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both types of costs simultaneously, has been recently introduced (Ling, Yang, Wang, &
Zhang, 2004; Sheng, Ling, Ni, & Zhang, 2006). A tree is built top-down, and a greedy split
criterion that takes into account both testing and misclassification costs is used. The basic
idea is to estimate the immediate reduction in total cost after each split, and to prefer the
split with the maximal reduction. If no split reduces the cost on the training data, the
induction process is stopped.

Although efficient, the DTMC approach can be trapped into a local minimum and
produce trees that are not globally optimal. For example, consider the concept and costs
described in Figure 2 (left). There are 10 attributes, of which only a9 and a10 are relevant.
The cost of a9 and a10, however, is significantly higher than the others. Such high costs may
hide the usefulness of a9 and a10, and mislead the learner into repeatedly splitting on a1−8,
which would result in a large, expensive tree. The problem would be intensified if a9 and
a10 were interdependent, with a low immediate information gain (e.g., a9 ⊕ a10). In that
case, even if the costs were uniform, a local measure might fail to recognize the relevance
of a9 and a10.

DTMC is appealing when learning resources are very limited. However, it requires a
fixed runtime and cannot exploit additional resources to escape local minima. In many
real-life applications, we are willing to wait longer if a better tree can be induced (Esmeir &
Markovitch, 2006). For example, the importance of the model in saving patients’ lives may
convince the medical center to allocate 1 month to learn it. Algorithms that can exploit
additional time to produce better solutions are called anytime algorithms (Boddy & Dean,
1994).

The ICET algorithm (Turney, 1995) was a pioneer in non-greedy search for a tree that
minimizes test and misclassification costs. ICET uses genetic search to produce a new
set of costs that reflects both the original costs and the contribution of each attribute in
reducing misclassification costs. Then it builds a tree using the EG2 algorithm (Nunez,
1991) but with the evolved costs instead of the original ones. EG2 is a greedy cost-sensitive
algorithm that builds a tree top-down and evaluates candidate splits by considering both
the information gain they yield and their measurement costs. It does not, however, take
into account the misclassification cost of the problem.

ICET was shown to significantly outperform greedy tree learners, producing trees of
lower total cost. ICET can use additional time resources to produce more generations and
hence widen its search in the space of costs. Because the genetic operations are randomized,
ICET is more likely to escape local minima – into which EG2 with the original costs might
be trapped. Nevertheless, two shortcomings limit ICET’s ability to benefit from extra time.
First, after the search phase, it uses the greedy EG2 algorithm to build the final tree.
But because EG2 prefers attributes with high information gain (and low test cost), the
usefulness of highly relevant attributes may be underestimated by the greedy measure in the
case of hard-to-learn concepts where attribute interdependency is hidden. This will result
in more expensive trees. Second, even if ICET overcomes the above problem by randomly
reweighting the attributes, it searches the space of parameters globally, regardless of the
context in the tree. This imposes a problem if an attribute is important in one subtree but
useless in another. To better understand these shortcomings, consider the concept described
by the tree in Figure 2 (right). There are 10 attributes with similar costs. The value of a1

determines whether the target concept is a7⊕a9 or a4⊕a6. The interdependencies result in
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a low gain for all attributes. Because ICET assigns costs globally, the attributes will have
similar costs as well. Therefore, ICET will not be able to recognize which one is relevant in
which context. If the irrelevant attributes are cheaper, the problem is intensified and the
model might end up relying on irrelevant attributes.

Recently, we have introduced the cost-insensitive LSID3 algorithm, which can induce
more accurate trees when allocated more time (Esmeir & Markovitch, 2007a). The algo-
rithm evaluates a candidate split by estimating the size of the smallest consistent tree under
it. The estimation is based on sampling the space of consistent trees, where the size of the
sample is determined in advance according to the allocated time. LSID3 is not designed,
however, to minimize test and misclassification costs. In this work we build on LSID3 and
propose ACT, an anytime cost-sensitive tree learner that can exploit additional time to
produce lower-cost trees. Applying the sampling mechanism in the cost-sensitive setup,
however, is not trivial and imposes three major challenges: (1) how to produce the sample,
(2) how to evaluate the sampled trees, and (3) how to prune the induced trees. In Section
3 we show how these obstacles may be overcome.

In Section 4 we report an extensive set of experiments that compares ACT to several
decision tree learners using a variety of datasets with costs assigned by human experts
or automatically. The results show that ACT is significantly better for the majority of
problems. In addition, ACT is shown to exhibit good anytime behavior with diminishing
returns.

2. Cost-Sensitive Classification

Offline concept learning consists of two stages: the learning stage, where a set of labeled
examples is used to induce a classifier; and the classification stage, where the induced
classifier is used to classify unlabeled instances. These two stages involve different types
of costs (Turney, 2000). Our primary goal in this work is to trade learning speed for a
reduction in test and misclassification costs. To make the problem well defined, we need to
specify: (1) how misclassification costs are represented, (2) how test costs are calculated,
and (3) how we should combine both types of cost.

To answer these questions, we adopt the model described by Turney (1995). In a problem
with |C| different classes, a misclassification cost matrix M is a |C|× |C| matrix whose Mi,j

entry defines the penalty of assigning the class ci to an instance that actually belongs to the
class cj . Typically, entries on the main diagonal of a classification cost matrix (no error)
are all zero.

When classifying an example e using a tree T , we propagate e down the tree along a
single path from the root of T to one of its leaves. Let Θ(T, e) be the set of tests along this
path. We denote by cost(θ) the cost of administering the test θ. The testing cost of e in T
is therefore tcost(T, e) =

∑
θ∈Θ cost(θ). Note that we use sets notation because tests that

appear several times are charged for only once. In addition, the model described by Turney
(1995) handles two special test types, namely grouped and delayed tests.

Grouped Tests. Some tests share a common cost, for which we would like to charge only
once. Typically, the test also has an extra (possibly different) cost. For example, consider a
tree path with tests like cholesterol level and glucose level. For both values to be measured,
a blood test is needed. Taking blood samples to measure the cholesterol level clearly lowers
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the cost of measuring the glucose level. Formally, each test possibly belongs to a group.2 If
it’s the first test from the group to be administered, we charge for the full cost. If another
test from the same group has already been administered earlier in the decision path, we
charge only for the marginal cost.

Delayed Tests. Sometimes the outcome of a test cannot be obtained immediately, e.g.,
lab test results. Such tests, called delayed tests, force us to wait until the outcome is
available. Alternatively, Turney (1995) suggests taking into account all possible outcomes:
when a delayed test is encountered, all the tests in the subtree under it are administered
and charged for. Once the result of the delayed test is available, the prediction is at hand.
One problem with this setup is that it follows all paths in the subtree, regardless of the
outcome of non-delayed costs. Moreover, it is not possible to distinguish between the delays
different tests impose: for example, one result might be ready after several minutes while
another only after a few days. In this work we do not handle delayed tests, but we do
explain how ACT can be modified to take them into account.

After the test and misclassification costs have been measured, an important question
remains: How should we combine them? Following Turney (1995), we assume that both
cost types are given in the same scale. A more general model would require a utility function
that combines both types. Qin, Zhang, and Zhang (2004) presented a method to handle the
two kinds of cost scales by setting a maximal budget for one kind of cost and minimizing
the other one. Alternatively, patient preferences can be elicited and summarized as a utility
function (Lenert & Soetikno, 1997).

Note that the algorithm we introduce in this paper can be adapted to any cost model. An
important property of our cost-sensitive setup is that maximizing generalization accuracy,
which is the goal of most existing learners, can be viewed as a special case: when accuracy
is the only objective, test costs are ignored and misclassification cost is uniform.

3. The ACT Algorithm

ACT, our proposed anytime framework for induction of cost-sensitive decision trees, builds
on the recently introduced LSID3 algorithm. LSID3 adopts the general top-down scheme
for induction of decision trees (TDIDT): it starts from the entire set of training examples,
partitions it into subsets by testing the value of an attribute, and then recursively builds
subtrees. Unlike greedy inducers, LSID3 invests more time resources for making better split
decisions. For every candidate split, LSID3 attempts to estimate the size of the resulting
subtree were the split to take place. Following Occam’s razor (Blumer, Ehrenfeucht, Haus-
sler, & Warmuth, 1987; Esmeir & Markovitch, 2007b), it favors the one with the smallest
expected size.

The estimation is based on a biased sample of the space of trees rooted at the evaluated
attribute. The sample is obtained using a stochastic version of ID3 (Quinlan, 1986), which
we call SID3. In SID3, rather than choosing an attribute that maximizes the information
gain ∆I (as in ID3), we choose the splitting attribute semi-randomly. The likelihood that
an attribute will be chosen is proportional to its information gain. Due to its randomization,

2. In this model each test may belong to a single group. However, it is easy to extend our work to allow
tests that belong to several groups.
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Procedure LSID3-Choose-Attribute(E, A, r)
If r = 0

Return ID3-Choose-Attribute(E, A)
Foreach a ∈ A

Foreach vi ∈ domain(a)
Ei ← {e ∈ E | a(e) = vi}
mini ← ∞
Repeat r times

T ← SID3(Ei, A − {a})
mini ← min (mini,Size(T ))

totala ←
∑|domain(a)|

i=1 mini

Return a for which totala is minimal

Figure 3: Attribute selection in LSID3

repeated invocations of SID3 result in different trees. For each candidate attribute a, LSID3
invokes SID3 r times to form a sample of r trees rooted at a, and uses the size of the smallest
tree in the sample to evaluate a. Obviously, when r is larger, the resulting size estimations
are expected to be more accurate, improving the final tree. Consider, for example, a 3-XOR
concept with several additional irrelevant attributes. For LSID3 to prefer one of the relevant
attributes at the root, one of the trees in the samples of the relevant attributes must be the
smallest. The probability for this event increases with the increase in sample size.

LSID3 is a contract anytime algorithm parameterized by r, the sample size. Additional
time resources can be utilized by forming larger samples. Figure 3 lists the procedure for
attribute selection as applied by LSID3. Let m = |E| be the number of examples and
n = |A| be the number of attributes. The runtime complexity of LSID3 is O(rmn3). LSID3
was shown to exhibit good anytime behavior with diminishing returns. When applied to
hard concepts, it produced significantly better trees than ID3 and C4.5.

ACT takes the same sampling approach as LSID3. The three major components of
LSID3 that need to be replaced in order to adapt it for cost-sensitive problems are: (1)
sampling the space of trees, (2) evaluating a tree, and (3) pruning a tree.

3.1 Obtaining the Sample

LISD3 uses SID3 to bias the samples towards small trees. In ACT, however, we would like
to bias our sample towards low-cost trees. For this purpose, we designed a stochastic version
of the EG2 algorithm, which attempts to build low cost trees greedily. In EG2, a tree is
built top-down, and the test that maximizes ICF is chosen for splitting a node, where,

ICF (θ) =
2∆I(θ) − 1

(cost (θ) + 1)w .

∆I is the information gain (as in ID3). The parameter w ∈ [0, 1] controls the bias
towards lower cost attributes. When w = 0, test costs are ignored and ICF relies solely

6



Anytime Induction of Low-cost, Low-error Classifiers

Procedure SEG2-Choose-Attribute(E, A)
Foreach a ∈ A

∆I (a) ← Information-Gain(E, a)
c (a) ← Cost(a)

p (a) ← 2∆I(a)−1
(c(a)+1)w

a∗ ← Choose attribute at random from A;
for each attribute a, the probability
of selecting it is proportional to p (a)

Return a∗

Figure 4: Attribute selection in SEG2

on the information gain. Larger values of w strengthen the effect of test costs on ICF. We
discuss setting the value of w in Section 3.5.

In stochastic EG2 (SEG2), we choose splitting attributes semi-randomly, proportionally
to their ICF. Because SEG2 is stochastic, we expect to be able to escape local minima for at
least some of the trees in the sample. Figure 4 formalizes the attribute selection component
in SEG2. To obtain a sample of size r, ACT uses EG2 once and SEG2 r − 1 times. EG2
and SEG2 are given direct access to context-based costs, i.e., if an attribute has already
been tested, its cost is zero and if another attribute that belongs to the same group has
been tested, a group discount is applied.

3.2 Evaluating a Subtree

LSID3 is a cost-insensitive learning algorithm. As such, its main goal is to maximize the
expected accuracy of the learned tree. Occam’s razor states that given two consistent
hypotheses, the smaller one is likely to be more accurate. Following Occam’s razor, LSID3
uses the tree size as a preference bias and favors splits that are expected to reduce its final
size.

In a cost-sensitive setup, however, our goal is to minimize the expected total cost of
classification. Therefore, rather than choosing an attribute that minimizes the size, we
would like to choose one that minimizes the total cost. Given a decision tree, we need to
come up with a procedure that estimates the expected cost of using the tree to classify a
future case. This cost has two components: the test cost and the misclassification cost.

3.2.1 Estimating Test Costs

Assuming that the distribution of future cases would be similar to that of the learning
examples, we can estimate the test costs using the training data. Given a tree, we calculate
the average test cost of the training examples and use it to estimate the test cost of new
cases. For a (sub)tree T built from E, a set of m training examples, we denote the average
cost of traversing T for an example from E by

tcost(T, E) =
1

m

∑

e∈E

tcost(T, e).

7



Esmeir & Markovitch

The estimated test cost for an unseen example e∗ is therefore ̂tcost(T, e∗) = tcost(T, E).
Observe that costs are calculated in the relevant context. If an attribute a has already

been tested in upper nodes, we will not charge for testing it again. Similarly, if an attribute
from a group g has already been tested, we will apply a group discount to the other attributes
from g. If a delayed attribute is encountered, we sum the cost of the entire subtree.

3.2.2 Estimating Misclassification Costs

How to go about estimating the cost of misclassification is not obvious. The tree size can
no longer be used as a heuristic for predictive errors. Occam’s razor allows the comparison
of two consistent trees but provides no means for estimating accuracy. Moreover, tree size
is measured in a different currency than accuracy and hence cannot be easily incorporated
in the cost function.

Rather than using the tree size, we propose a different estimator: the expected error
(Quinlan, 1993). For a leaf with m training examples, of which s are misclassified, the
expected error is defined as the upper limit on the probability for error, i.e., EE(m, s, cf) =
U bin

cf (m, s), where cf is the confidence level and U bin is the upper limit of the confidence
interval for binomial distribution. The expected error of a tree is the sum of the expected
errors in its leaves.

Originally, the expected error was used by C4.5’s error-based pruning to predict whether
a subtree performs better than a leaf. Although lacking a theoretical basis, it was shown
experimentally to be a good heuristic. In ACT we use the expected error to approximate
the misclassification cost. Assume a problem with |C| classes and a misclassification cost
matrix M . Let c be the class label in a leaf l. Let ml be the total number of examples in
l and mi

l be the number of examples in l that belong to class i. When the penalties for
predictive errors are uniform (Mi,j = mc), the estimated misclassification cost in l is

m̂cost (l) = EE(ml, ml − mc
l , cf) · mc.

In a problem with nonuniform misclassification costs, mc should be replaced by the cost
of the actual errors the leaf is expected to make. These errors are obviously unknown to the
learner. One solution is to estimate each error type separately using confidence intervals
for multinomial distribution and multiply it by the associated cost:

m̂cost (l) =
∑

i6=c

Umul
cf (ml, m

i
l, |C|) · mc.

Such approach, however, would result in an overly pessimistic approximation, mainly
when there are many classes. Alternatively, we compute the expected error as in the uniform
case and propose replacing mc by the weighted average of the penalty for classifying an
instance as c while it belongs to another class. The weights are derived from the proportions

mi

l

ml−mc

l

using a generalization of Laplace’s law of succession (Good, 1965, chap. 4):

m̂cost (l) = EE(ml, ml − mc
l , cf) ·

∑

i6=c

(
mi

l + 1

ml − mc
l + |C| − 1

· Mc,i

)
.

Note that in a problem with C classes, the average is over C − 1 possible penalties
because Mc,c = 0. Hence, in a problem with two classes c1, c2 if a leaf is marked as c1, mc
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Procedure ACT-Choose-Attribute(E, A, r)
If r = 0

Return EG2-Choose-Attribute(E, A)
Foreach a ∈ A

Foreach vi ∈ domain(a)
Ei ← {e ∈ E | a(e) = vi}
T ← EG2(a, Ei, A − {a})
mini ← Total-Cost(T, Ei)
Repeat r − 1 times

T ← SEG2(a, Ei, A − {a})
mini ← min (mini,Total-Cost(T, Ei))

totala ← Cost(a) +
∑|domain(a)|

i=1 mini

Return a for which totala is minimal

Figure 5: Attribute selection in ACT

would be replaced by M1,2. When classifying a new instance, the expected misclassification
cost of a tree T built from m examples is the sum of the expected misclassification costs in
the leaves divided by m:

m̂cost(T ) =
1

m

∑

l∈L

m̂cost(l),

where L is the set of leaves in T . Hence, the expected total cost of T when classifying a
single instance is:

̂total(T, E) = ̂tcost(T, E) + m̂cost(T ).

An alternative approach that we intend to explore in future work is to estimate the cost
of the sampled trees using the cost for a set-aside validation set. This approach is attractive
mainly when the training set is large and one can afford setting aside a significant part of
it.

3.3 Choosing a Split

Having decided about the sampler and the tree utility function, we are ready to formalize
the tree growing phase in ACT. A tree is built top-down. The procedure for selecting a
splitting test at each node is listed in Figure 5 and illustrated in Figure 6. We give a
detailed example of how ACT chooses splits and explain how the split selection procedure
is modified for numeric attributes.

3.3.1 Choosing a Split: Illustrative Examples

ACT’s evaluation is cost-senstive both in that it considers test and error costs simultaneously
and in that it can take into account different error penalties. To illustrate this let us consider
a two-class problem with mc = 100$ (uniform) and 6 attributes, a1, . . . , a6, whose costs are
10$. The training data contains 400 examples, out of which 200 are positive and 200 are
negative.
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Figure 6: Attribute evaluation in ACT. Assume that the cost of a in the current context is
0.4. The estimated cost of a subtree rooted at a is therefore 0.4+min(4.7, 5.1)+
min(8.9, 4.9) = 10.
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Figure 7: Evaluation of tree samples in ACT. The leftmost column defines the costs: 6
attributes with identical cost and uniform error penalties. T1 was sampled for a1

and T2 for a2. EE stands for the expected error. Because the total cost of T1 is
lower, ACT would prefer to split on a1.

Assume that we have to choose between a1 and a2, and that r = 1. Let the trees in
Figure 7, denoted T1 and T2, be those sampled for a1 and a2 respectively. The expected
error costs of T1 and T2 are:3

m̂cost(T1) =
1

400
(4 · EE (100, 5, 0.25)) · 100$ =

4 · 7.3

400
· 100$ = 7.3$

m̂cost(T2) =
1

400
(2 · EE (50, 0, 0.25) · 100$ + 2 · EE (150, 50, 0.25) · 100$)

=
2 · 1.4 + 2 · 54.1

400
· 100$ = 27.7$

When both test and error costs are involved, ACT considers their sum. Since the test
cost of both trees is identical (20$), ACT would prefer to split on a1. If, however, the cost

3. In this example we set cf to 0.25, as in C4.5. In Section 3.5 we discuss how to tune cf .
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Figure 8: Evaluation of tree samples in ACT. The leftmost column defines the costs: 6
attributes with identical cost (except for the expensive a1) and uniform error
penalties. T1 was sampled for a1 and T2 for a2. Because the total cost of T2 is
lower, ACT would prefer to split on a2.
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Figure 9: Evaluation of tree samples in ACT. The leftmost column defines the costs: 6
attributes with identical cost and nonuniform error penalties. T1 was sampled
for a1 and T2 for a2. Because the total cost of T2 is lower, ACT would prefer to
split on a2.

of a1 were 40$, as in Figure 8, tcost(T1) would become 50$ and the total cost of T1 would
become 57.3$, while that of T2 would remain 47.7$. Hence, in this case ACT would split
on a2.

To illustrate how ACT handles nonuniform error penalties, let us assume that the cost
of all attributes is again 10$, while the cost of a false positive (FP) is 1$ and the cost of a
false negative (FN) is 199$. Let the trees in Figure 9, denoted T1 and T2, be those sampled
for a1 and a2 respectively. As in the first example, only misclassification costs play a role
because the test costs of both trees is the same. Although on average the misclassification
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cost is also 100$, ACT now evaluates these trees differently:

m̂cost(T1) =
1

400
(2 · EE (100, 5, 0.25) · 1$ + 2 · EE (100, 5, 0.25) · 199$)

=
2 · 7.3 · 1$ + 2 · 7.3.1 · 199$

400
= 7.3$

m̂cost(T2) =
1

400
(2 · EE (50, 0, 0.25) · 199$ + 2 · EE (100, 50, 0.25) · 1$)

=
2 · 1.4 · 199$ + 2 · 54.1 · 1$

400
= 1.7$

Therefore, in the nonuniform setup, ACT would prefer a2. This makes sense because in the
given setup we prefer trees that may result in more false positives but reduce the number
of expensive false negatives.

3.3.2 Choosing a Split when Attributes are Numeric

The selection procedure as formalized in Figure 5 must be modified slightly when an at-
tribute is numeric: rather than iterating over the values the attribute can take, we first pick
r tests (split points) with the highest information gain and then invoke EG2 once for each
split point. This guarantees that numeric and nominal attributes get the same resources.
Chickering, Meek, and Rounthwaite (2001) introduced several techniques for generating a
small number of candidate split points dynamically with little overhead. In the future we
intend to apply these techniques to select r points, each of which will be evaluated with a
single invocation of EG2.

3.4 Cost-Sensitive Pruning

Pruning plays an important role in decision tree induction. In cost-insensitive environments,
the main goal of pruning is to simplify the tree in order to avoid overfitting the training
data. A subtree is pruned if the resulting tree is expected to yield a lower error.

When test costs are taken into account, pruning has another important role: reducing
test costs in a tree. Keeping a subtree is worthwhile only if its expected reduction in mis-
classification costs is larger than the cost of the tests in that subtree. If the misclassification
cost is zero, it makes no sense to keep any split in the tree. If, on the other hand, the mis-
classification cost is much larger than the test costs, we would expect similar behavior to
the cost-insensitive setup.

To handle this challenge, we propose a novel approach for cost-sensitive pruning. As in
error-based pruning (Quinlan, 1993), we scan the tree bottom-up. Then we compare the
expected total cost of each subtree to that of a leaf. If a leaf is expected to perform better,
the subtree is pruned.

The cost of a subtree is estimated as described in Section 3.2. Formally, let E be the
set of training examples that reach a subtree T , and let m be the size of E. Assume that
s examples in E do not belong to the default class.4 Let L be the set of leaves in T . We

4. If misclassification costs are uniform, the default class is the majority class. Otherwise, it is the class
that minimizes the misclassification cost in the node.
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prune T into a leaf if:

1

m
· EE(m, s, cf) · mc ≤ ̂tcost(T, E) +

∑

l∈L

m̂cost(l).

The above assumes a uniform misclassification cost mc. In the case of nonuniform penalties,
we multiply the expected error by the average misclassification cost.

An alternative approach for post-pruning is early stopping of the growing phase. For
example, one could limit the depth of the tree, require a minimal number of examples in
each child (as in C4.5), or prevent splitting nodes when the splitting criterion fails to exceed
a predetermined threshold (as in DTMC). Obviously, any pre-pruning condition can also
be applied as part of the post-pruning procedure. The advantage of post-pruning, however,
is its ability to estimate the effect of a split on the entire subtree below it, and not only on
its immediate successors (horizon effect).

Consider for example the 2-XOR problem a ⊕ b. Splitting on neither a nor b would
have a positive gain and hence the growing would be stopped. If no pre-pruning is allowed,
the optimal tree would be found and would not be post-pruned because the utility of the
splits is correctly measured. Frank (2000) reports a comprehensive study about pruning of
decision trees, in which he compared pre- to post-pruning empirically in a cost-insensitive
setup. His findings show that the advantage of post-pruning on a variety of UCI datasets
is not significant. Because pre-pruning is computationally more efficient, Frank concluded
that, in practice, it might be a viable alternative to post-pruning. Despite these results, we
decided to use post-pruning in ACT, for the following reasons:

1. Several concepts not represented in the UCI repository may appear in real-world
problems. For example, parity functions naturally arise in real-world problems, such
as the Drosophila survival concept (Page & Ray, 2003).

2. When costs are involved, the horizon effect may appear more frequently because high
costs may hide good splits.

3. In our anytime setup the user is willing to wait longer in order to obtain a good tree.
Since post-pruning takes even less time than the induction of a single greedy tree, the
extra cost of post-pruning is minor.

In the future we plan to add a pre-pruning parameter which will allow early stopping
when resources are limited. Another interesting direction for future work would be to post-
prune the final tree but pre-prune the lookahead trees that form the samples. This would
reduce the runtime at the cost of less accurate estimations for the utility of each candidate
split.

3.5 Setting the Parameters of ACT

In addition to r, the sample size, ACT is parameterized by w, which controls the weight
of the test costs in EG2, and cf , the confidence factor used both for pruning and for error
estimation. ICET tunes w and cf using genetic search. In ACT we considered three different
alternatives: (1) keeping EG2’s and C4.5’s default values w = 1 and cf = 0.25, (2) tuning
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the values using cross-validation, and (3) setting the values a priori, as a function of the
problem costs.

While the first solution is the simplest, it does not exploit the potential of adapting
the sampling mechanism to the specific problem costs. Although tuning the values using
grid search would achieve good results, it may be costly in terms of runtime. For example,
if we had 5 values for each parameter and used 5-fold cross-validation, we would need to
run ACT 125 times for the sake of tuning alone. In our anytime setup this time could be
invested to invoke ACT with a larger r and hence improve the results. Furthermore, the
algorithm would not be able to output any valid solution before the tuning stage is finished.
Alternatively, we could try to tune the parameters by invoking the much faster EG2, but
the results would not be as good because the optimal values for EG2 are not necessarily
good for ACT.

The third approach, which we chose for our experiments, is to set w and cf in advance,
according to the problem specific costs. w is set inverse proportionally to the misclassifica-
tion cost: a high misclassification cost results in a smaller w, reducing the effect of attribute
costs on the split selection measure. The exact formula is:

w = 0.5 + e−x,

where x is the average misclassification cost (over all non-diagnoal entries in M) divided by
TC, the cost if we take all tests. Formally,

x =

∑
i6=j Mi,j

(|C| − 1) · |C| · TC
.

In C4.5 the default value of cf is 0.25. Larger cf values result in less pruning. Smaller
cf values lead to more aggressive pruning. Therefore, in ACT we set cf to a value in the
range [0.2, 0.3]; the exact value depends on the problem cost. When test costs are dominant,
we prefer aggressive pruning and hence a low value for cf . When test costs are negligible,
we prefer to prune less. The same value of cf is also used to estimate the expected error.
Again, when test costs are dominant, we can afford a pessimistic estimate of the error, but
when misclassification costs are dominant, we would prefer that the estimate be closer to
the error rate in the training data. The exact formula for setting cf is:

cf = 0.2 + 0.05(1 +
x − 1

x + 1
).

4. Empirical Evaluation

We conducted a variety of experiments to test the performance and behavior of ACT.
First we introduce a novel method for automatic adaption of existing datasets to the cost-
sensitive setup. We then describe our experimental methodology and its motivation. Finally
we present and discuss our results.

4.1 Datasets

Typically, machine learning researchers use datasets from the UCI repository (Asuncion &
Newman, 2007). Only five UCI datasets, however, have assigned test costs.5 We include

5. Costs for these datasets have been assigned by human experts (Turney, 1995).
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these datasets in our experiments. Nevertheless, to gain a wider perspective, we have
developed an automatic method that assigns costs to existing datasets. The method is
parameterized with:

1. cr, the cost range.

2. g, the number of desired groups as a percentage of the number of attributes. In a
problem with |A| attributes, there are g · |A| groups. The probability for an attribute
to belong to each of these groups is 1

g·|A|+1 , as is the probability for it not to belong
to any of the groups.

3. d, the number of delayed tests as a percentage of the number of attributes.

4. ϕ, the group discount as a percentage of the minimal cost in the group (to ensure
positive costs).

5. ρ, a binary flag which determines whether costs are drawn randomly, uniformly (ρ = 0)
or semi-randomly (ρ = 1): the cost of a test is drawn proportionally to its information
gain, simulating a common case where valuable features tend to have higher costs. In
this case we assume that the cost comes from a truncated normal distribution, with
the mean being proportional to the gain.

Using this method, we assigned costs to 25 datasets: 20 arbitrarily chosen UCI datasets6

and 5 datasets that represent hard concepts and have been used in previous research. Ap-
pendix A gives detailed descriptions of these datasets.

Due to the randomization in the cost assignment process, the same set of parameters
defines an infinite space of possible costs. For each of the 25 datasets we sampled this space
4 times with

cr = [1, 100], g = 0.2, d = 0, ϕ = 0.8, ρ = 1.

These parameters were chosen in an attempt to assign costs in a manner similar to that in
which real costs are assigned. In total, we have 105 datasets: 5 assigned by human experts
and 100 with automatically generated costs.7

Cost-insensitive learning algorithms focus on accuracy and therefore are expected to per-
form well when testing costs are negligible relative to misclassification costs. However, when
testing costs are significant, ignoring them would result in expensive classifiers. Therefore,
evaluating cost-sensitive learners requires a wide spectrum of misclassification costs. For
each problem out of the 105, we created 5 instances, with uniform misclassification costs
mc = 100, 500, 1000, 5000, 10000. Later on, we also consider nonuniform misclassification
costs.

4.2 Methodology

We start our experimental evaluation by comparing ACT, given a fixed resource alloca-
tion, with several other cost-sensitive and cost-insensitive algorithms. Next we compare
the anytime behavior of ACT to that of ICET. Finally, we evaluate the algorithms with

6. The chosen UCI datasets vary in size, type of attributes, and dimension.
7. The additional 100 datasets are available at http://www.cs.technion.ac.il/∼esaher/publications/cost.
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two modifications on the problem instances: random test cost assignment and nonuniform
misclassification costs.

4.2.1 Compared Algorithms

ACT is compared to the following algorithms:

• C4.5 : A cost-insensitive greedy decision tree learner. The algorithm has been re-
implemented following the details in (Quinlan, 1993) and the default parameters have
been used.

• LSID3 : A cost-insensitive anytime decision tree learner. As such it uses extra time to
induce trees of higher accuracy. It is not able, however, to exploit additional allotted
time to reduce classification costs.

• IDX : A greedy top-down learner that prefers splits that maximize ∆I
c (Norton, 1989).

The algorithm does not take into account misclassification costs. IDX has been im-
plemented on top of C4.5, by modifying the split selection criteria.

• CSID3 : A greedy top-down learner that prefers splits that maximize ∆I2

c (Tan &
Schlimmer, 1989). The algorithm does not take into account misclassification costs.
CSID3 has been implemented on top of C4.5, by modifying the split selection criteria.

• EG2 : A greedy top-down learner that prefers splits that maximize 2∆I(θ)−1

(cost(θ)+1)
w

(Nunez, 1991). The algorithm does not take into account misclassification costs.
EG2 has been implemented on top of C4.5, by modifying the split selection criteria.

• DTMC : DTMC was implemented by following the original pseudo-code (Ling et al.,
2004; Sheng et al., 2006). However, the original pseudo-code does not support con-
tinuous attributes and multiple class problems. We added support to continuous
attributes, as in C4.5’s dynamic binary-cut discretization, with the cost reduction
replacing gain ratio for selecting cutting points. The extension to multiple class prob-
lems was straightforward. Note that DTMC does not post-prune the trees but only
pre-prunes them.

• ICET : ICET has been reimplemented following the detailed description given by
Turney (1995). To verify the results of the reimplementation, we compared them
with those reported in the literature. We followed the same experimental setup and
used the same 5 datasets. The results are indeed similar: the basic version of ICET
achieved an average cost of 50.8 in our reimplementation vs. 50 reported originally.
One possible reason for the slight difference may be that the initial population of
the genetic algorithm is randomized, as are the genetic operators and the process of
partitioning the data into training, validating, and testing sets. In his paper, Turney
introduced a seeded version of ICET, which includes the true costs in the initial
population, and reported it to perform better than the unseeded version. Therefore,
we use the seeded version for our comparison. The other parameters of ICET are the
default ones.
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4.2.2 Normalized Cost

As Turney (1995) points out, using the average cost of classification for each dataset is
problematic because: (1) the cost differences of the algorithms become relatively small as
the misclassification cost increases, (2) it is difficult to combine the results for multiple
datasets in a fair manner (e.g., average), and (3) it is difficult to combine the average of the
different misclassification costs. To overcome these problems, Turney suggests normalizing
the average cost of classification by dividing it by the standard cost. Let TC be the cost if
we take all tests. Let fi be the frequency of class i in the data. The error if the response is
always class i is therefore (1 − fi). The standard cost is defined as

TC + mini (1 − fi) · maxi,j (Mi,j) .

The standard cost is an approximation for the maximal cost in a given problem. It
consists of two components: the maximal test cost and the misclassification cost if the
classifier achieves only the baseline accuracy (e.g., a majority-based classifier when error
costs are uniform). Because some classifiers may perform even worse than the baseline
accuracy, the standard cost is not strictly an upper bound on real cost. In most of our
experiments, however, it has not been exceeded.

4.2.3 Statistical Significance

For each problem out of the 105, a single 10-fold cross-validation experiment was conducted.
The same partition to train-test sets was used for all compared algorithms. To determine
statistical significance of the performance differences between ACT, ICET, and DTMC we
used two tests:

• Paired t-test with α = 5% confidence. For each problem out of the 105 and for
each pair of algorithms, we have 10 pairs of results obtained from the 10-fold cross
validation runs. We used paired t-test to determine weather the difference between
the two algorithms on a given problem is significant (rejecting the null hypothesis that
the algorithms do not differ in their performance). Then, we count for each algorithm
how many times it was a significant winner.

• Wilcoxon test (Demsar, 2006), which compares classifiers over multiple datasets and
states whether one method is significantly better than the other (α = 5%).

4.3 Fixed-time Comparison

For each of the 105 × 5 problem instances, we ran the different algorithms, including ACT
with r = 5. We chose r = 5 so the average runtime of ACT would be shorter than ICET over
all problems. The other methods have much shorter runtime due to their greedy nature.

Table 1 summarizes the results.8 Each pair of numbers represents the average normalized
cost and its associated confidence interval (α = 5%). Figure 10 illustrates the average results
and plots the normalized costs for the different algorithms and misclassification costs.

Statistical significance test results for ACT, ICET, and DTMC are given in Table 2.
The algorithms are compared using both the t-test and the Wilcoxon test. The table lists

8. The full results are available at http://www.cs.technion.ac.il/∼esaher/publications/cost.
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Table 1: Average cost of classification as a percentage of the standard cost of classification
for different mc values. The numbers represent the average over all 105 datasets
and the associated confidence intervals (α = 5%).

mc C4.5 LSID3 IDX CSID3 EG2 DTMC ICET ACT

100 50.6 ±4.2 45.3 ±3.7 34.4 ±3.6 41.7 ±3.8 35.1 ±3.6 14.6 ±1.8 24.3 ±3.1 15.2 ±1.9
500 49.9 ±4.2 43.0 ±3.9 42.4 ±3.6 45.2 ±3.9 42.5 ±3.6 37.7 ±3.1 36.3 ±3.1 34.5 ±3.2
1000 50.4 ±4.6 42.4 ±4.5 47.5 ±4.2 47.8 ±4.4 47.3 ±4.3 47.1 ±3.8 40.6 ±3.9 39.1 ±4.2
5000 53.3 ±5.9 43.6 ±6.1 58.1 ±5.9 54.3 ±5.9 57.3 ±5.9 57.6 ±5.2 45.7 ±5.6 41.5 ±5.7
10000 54.5 ±6.4 44.5 ±6.6 60.8 ±6.4 56.2 ±6.4 59.9 ±6.4 59.5 ±5.6 47.1 ±6.0 41.4 ±6.0

Table 2: DTMC vs. ACT and ICET vs. ACT using statistical tests. For each mc, the first
column lists the number of t-test significant wins while the second column gives
the winner, if any, as implied by a Wilcoxon test over all datasets with α = 5%.

t − test WINS Wilcoxon WINNER

mc DTMC vs. ACT ICET vs. ACT DTMC vs. ACT ICET vs. ACT

100 14 3 4 54 DTMC ACT
500 9 29 5 23 ACT ACT
1000 7 45 12 24 ACT ACT
5000 7 50 15 21 ACT ACT
10000 6 56 7 24 ACT -

the number of t-test wins for each algorithm out of the 105 datasets, as well as the winner,
if any, when the Wilcoxon test was applied.

When misclassification cost is relatively small (mc = 100), ACT clearly outperforms
ICET, with 54 significant wins as opposed to ICET’s 4 significant wins. No significant
difference was found in the remaining runs. In this setup ACT was able to produce very
small trees, sometimes consisting of one node; the accuracy of the learned model was ignored
in this setup. ICET, on the contrary, produced, for some of the datasets, larger and more
costly trees. DTMC achieved the best results, and outperformed ACT 14 times. The
Wilcoxon test also indicates that DTMC is better than ACT and that ACT is better than
ICET. Further investigation showed that for a few datasets ACT produced unnecessarily
larger trees. We believe that a better tuning of cf would improve ACT in this scenario by
making the pruning more aggressive.

At the other extreme, when misclassification costs dominate (mc = 10000), the per-
formance of DTMC is worse than ACT and ICET. The t-test indicates that ACT was
significantly better than ICET 24 times and significantly worse only 7 times. According to
the Wilcoxon test with α = 5%, the difference between ACT and ICET is not significant.
Taking α > 5.05%, however, would turn the result in favor of ACT. Observe that DTMC,
the winner when mc = 100, becomes the worst algorithm when mc = 10000. One reason
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Figure 10: Average normalized cost as a function of misclassification cost
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Figure 11: Illustration of the differences in performance between ACT and ICET for mc =
100, 1000, 10000 (from left to right). Each point represents a dataset. The x-axis
represents the cost of ICET while the y-axis represents that of ACT. The dashed
line indicates equality. Points are below it if ACT performs better and above it
if ICET is better.

for this phenomenon is that DTMC, as introduced by Ling et al. (2004), does not perform
post-pruning, although doing so might improve accuracy in some domains.

The above two extremes are less interesting: for the first we could use an algorithm that
always outputs a tree of size 1 while for the second we could use cost-insensitive learners.
The middle range, where mc ∈ {500, 1000, 5000}, requires that the learner carefully balance
the two types of cost. In these cases ACT has the lowest average cost and the largest
number of t-test wins. Moreover, the Wilcoxon test indicates that it is superior. ICET is
the second best method. As reported by Turney (1995), ICET is clearly better than the
greedy methods EG2, IDX, and CSID3.

Note that EG2, IDX, and CSID3, which are insensitive to misclassification cost, pro-
duced the same trees for all values of mc. These trees, however, are judged differently with
the change in misclassification cost.

Figure 11 illustrates the differences between ICET and ACT for mc = 100, 1000, 10000.
Each point represents one of the 105 datasets. The x-axis represents the cost of ICET while
the y-axis represents that of ACT. The dashed line indicates equality. As we can see, the
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Figure 12: Average accuracy as a function of misclassification cost

majority of points are below the equality line, indicating that ACT performs better. For
mc = 10000 we can see that there are points located close to the x-axis but with large x
value. These points represent the difficult domains, such as XOR, which ICET could not
learn but ACT could.

4.4 Comparing the Accuracy of the Learned Models

When misclassification costs are low, an optimal algorithm would produce a very shallow
tree. When misclassification costs are dominant, an optimal algorithm would produce a
highly accurate tree. As we can see, ACT’s normalized cost increases with the increase in
misclassification cost. While it is relatively easy to produce shallow trees, some concepts
are not easily learnable and even cost-insensitive algorithms fail to achieve perfect accuracy
on them. Hence, as the importance of accuracy increases, the normalized cost increases too
because the predictive errors affect it more dramatically.

To learn more about the effect of misclassification costs on accuracy, we compare the
accuracy of the built trees for different misclassification costs. Figure 12 shows the results.
An important property of DTMC, ICET, and ACT is their ability to compromise on accu-
racy when needed. They produce inaccurate trees when accuracy is insignificant and much
more accurate trees when the penalty for error is high. ACT’s flexibility, however, is more
noteworthy: from the second least accurate method it becomes the most accurate one.

Interestingly, when accuracy is extremely important, both ICET and ACT achieve even
better accuracy than C4.5. The reason is their non-greedy nature. ICET performs an
implicit lookahead by reweighting attributes according to their importance. ACT performs
lookahead by sampling the space of subtrees before every split. Of the two, the results
indicate that ACT’s lookahead is more efficient in terms of accuracy. DTMC is less accurate
than C4.5. The reason is the different split selection criterion and the different pruning
mechanism.

In comparison to our anytime cost insensitive algorithm LSID3, ACT produced less
accurate trees when mc was relatively low. When mc was set to 5000, however, ACT
achieved comparable accuracy to LSID3 and slightly outperformed it for mc = 10000.
Statistical tests found the differences between the accuracy of the two algorithms in this
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Figure 13: Average normalized cost as a function of time for (from top-left to bottom-right)
Breast-cancer-20, Monks1, Multi-XOR, and XOR5

case to be insignificant. ACT’s small advantage on some of the datasets indicates that, for
some problems, expected error is a better heuristic than tree size for maximizing accuracy.

4.5 Comparison of Anytime Behavior

Both ICET and ACT, like other typical anytime algorithms, perform better with increased
resource allocation. ICET is expected to exploit the extra time by producing more gener-
ations and hence better tuning the parameters for the final invocation of EG2. ACT can
use the extra time to acquire larger samples and hence achieve better cost estimations.

To examine the anytime behavior of ICET and ACT, we ran them on 4 problems,
namely Breast-cancer-20, Monks-1, Multi-XOR, and XOR5, with exponentially increasing
time allocation. mc was set to 5000. ICET was run with 2, 4, 8, . . . generations and ACT
with a sample size of 1, 2, 4, . . .. As in the fixed-time comparison, we used 4 instances for
each problem. Figure 13 plots the results averaged over the 4 instances. We also included
the results for the greedy methods EG2 and DTMC.

The results show good anytime behavior of both ICET and ACT: generally it is worth-
while to allocate more time. ACT dominates ICET for the four domains and is able to
produce less costly trees in shorter time.

One advantage of ACT over ICET is that it is able to consider the context in which an
attribute is judged. ICET, on the contrary, reassigns the cost of the attributes globally: an
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500 31.5 ±3.2 31.8 ±3.4 30.2 ±3.3
1000 40.4 ±3.9 36.4 ±3.9 33.9 ±4.0
5000 54.0 ±5.2 43.7 ±5.5 38.5 ±5.6
10000 57.4 ±5.6 45.6 ±5.9 39.6 ±6.1

Figure 14: Average cost when test costs are assigned randomly

attribute cannot be assigned a high cost in one subtree and a low cost in another. The Multi-
XOR dataset exemplifies a concept whose attributes are important only in one sub-concept.
The concept is composed of four sub-concepts, each of which relies on different attributes
(see Appendix A for further details). As we expected, ACT outperforms ICET significantly
because the latter cannot assign context-based costs. Allowing ICET to produce more and
more generations (up to 128) does not result in trees comparable to those obtained by ACT.

4.6 Random Costs

The costs of 100 out of the 105 datasets were assigned using a semi-random mechanism that
gives higher costs to informative attributes. To ensure that ACT’s success is not due to
this particular cost assignment scheme, we repeated the experiments with the costs drawn
randomly uniformly from the given cost range cr, i.e., ρ was set to 0. Figure 14 shows the
results. As we can see, ACT maintains its advantage over the other methods: it dominates
them along the scale of mc values.

4.7 Nonuniform Misclassification Costs

So far, we have only used uniform misclassification cost matrices, i.e., the cost of each
error type was identical. As explained in Section 3, the ACT algorithm can also handle
complex misclassification cost matrices where the penalty for one type of error might be
higher than the penalty for another type. Our next experiment examines ACT in the
nonuniform scenario. Let FP denote the penalty for a false positive and FN the penalty for
false negative. When there are more than 2 classes, we split the classes into 2 equal groups
according to their order (or randomly if no order exists). We then assign a penalty FP for
misclassifying an instance that belongs to the first group and FN for one that belongs to
the second group.

To obtain a wide view, we vary the ratio between FP and FN and also examine different
absolute values. Table 3 and Figure 15 give the average results. Table 4 lists the number
of t-test significant wins each algorithm achieved. It is easy to see that ACT consistently
outperforms the other methods.
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Table 3: Comparison of C4.5, EG2, DTMC, ACT, and ICET when misclassification costs
are nonuniform. FP denotes the penalty for a false positive and FN the penalty
for a false negative. γ denotes the basic mc unit.

FP γ γ γ γ 2γ 4γ 8γ
FN 8γ 4γ 2γ γ γ γ γ

γ
=

5
0
0 C4.5 29.2 34.2 41.3 49.9 43.6 39.0 36.3

EG2 30.1 33.0 37.2 42.5 39.3 37.5 36.8
DTCM 12.4 20.3 29.8 37.7 32.5 22.9 15.8
ICET 23.3 27.0 31.5 36.3 34.2 31.8 29.2
ACT 11.9 18.5 27.2 34.5 29.1 20.4 13.8

γ
=

5
0
0
0 C4.5 27.0 31.3 39.2 53.3 44.0 39.0 36.3

EG2 30.9 35.2 43.1 57.3 47.7 42.4 39.7
DTCM 13.8 23.6 38.0 57.6 42.5 29.3 20.1
ICET 21.4 25.6 32.7 45.7 37.4 32.8 29.8
ACT 12.9 19.1 28.8 41.5 31.1 22.5 14.6

Table 4: Comparing DTMC, ACT, and ICET when misclassification costs are nonuniform.
For each FP/FN ratio, the columns list the number of t-test significant wins with
α = 5%. FP denotes the penalty for a false positive and FN the penalty for a
false negative. γ denotes the basic mc unit.

γ = 500 γ = 5000

FP/FN DTMC vs. ACT ICET vs. ACT DTMC vs. ACT ICET vs. ACT

0.125 4 22 11 52 5 44 12 44
0.25 2 31 7 49 10 49 4 36
0.5 10 25 7 42 16 52 10 25
1 9 29 5 23 7 50 15 21
2 5 35 1 47 5 61 9 31
4 3 40 0 72 4 58 0 44
8 1 27 4 72 0 62 0 67

Interestingly, the graphs are slightly asymmetric. The reason could be that for some
datasets, for example medical ones, it is more difficult to reduce negative errors than positive
ones, or vice versa. A similar phenomenon is reported by Turney (1995).

The highest cost for all algorithms is observed when FP = FN because, when the
ratio between FP and FN is extremely large or extremely small, the learner can easily
build a small tree whose leaves are labeled with the class that minimizes costs. When
misclassification costs are more balanced, however, the learning process becomes much
more complicated.
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Figure 15: Comparison of C4.5, EG2, DTMC, ACT, and ICET when misclassification costs
are nonuniform. The misclassification costs are represented as a pair (FP/FN).
FP denotes the penalty for a false positive and FN the penalty for a false
negative. γ denotes the basic mc unit. The figures plot the average cost as
a function of the ratio between FP and FN, for γ = 500 (left) and γ = 5000
(right).

5. Related Work

In addition to the works referred to earlier in this paper, several related works warrant
discussion here.

Cost-sensitive trees have been the subject of many research efforts. Several works pro-
posed learning algorithms that consider different misclassification costs (Breiman, Fried-
man, Olshen, & Stone, 1984; Pazzani, Merz, Murphy, Ali, Hume, & Brunk, 1994; Provost
& Buchanan, 1995; Bradford, Kunz, Kohavi, Brunk, & Brodley, 1998; Domingos, 1999;
Elkan, 2001; Zadrozny, Langford, & Abe, 2003; Lachiche & Flach, 2003; Abe, Zadrozny, &
Langford, 2004; Vadera, 2005; Margineantu, 2005; Zhu, Wu, Khoshgoftaar, & Yong, 2007;
Sheng & Ling, 2007). These methods, however, do not consider test costs and hence are
appropriate mainly for domains where test costs are not a constraint.

Davis, Ha, Rossbach, Ramadan, and Witchel (2006) presented a greedy cost-sensitive
decision tree algorithm for forensic classification: the problem of classifying irreproducible
events. In this setup, they assume that all tests that might be used for testing must be
acquired and hence charged for before classification.

One way to exploit additional time when searching for a less costly tree is to widen
the search space. Bayer-Zubek and Dietterich (2005) formulated the cost-sensitive learning
problem as a Markov decision process (MDP), and used a systematic search algorithm
based on the AO* heuristic search procedure to solve the MDP. To make AO* efficient,
the algorithm uses a two-step lookahead based heuristic. Such limited lookahead is more
informed than immediate heuristics but still insufficient for complex domains and might
cause the search to go astray (Esmeir & Markovitch, 2007a). The algorithm was shown to
output better diagnostic policies than several greedy methods using reasonable resources.
An optimal solution, however, could not always be found due to time and memory limits.
A nice property of the algorithm is that it can serve as an anytime algorithm by computing
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the best complete policy found so far. Its anytime behavior, nevertheless, is problematic
because policies that are optimal with respect to the train data tend to overfit. As a result,
the performance will eventually start to degrade.

Arnt and Zilberstein (2005) tackled the problem of time and cost sensitive classification
(TCSC). In TCSC, the utility of labeling an instance depends not only on the correctness of
the labeling, but also the amount of time it takes. Therefore the total cost function has an
additional component, which reflects the time needed to measure an attribute. Typically,
is has a super-linear form: the cost of a quick result is small and fairly constant, but as
the waiting time increases, the time cost grows at an increasing rate. The problem is
further complicated when a sequence of time-sensitive classification instances is considered,
where time spent administering tests for one case can adversely affect the costs of future
instances. Arnt and Zilberstein suggest solving these problems by extending the decision
theoretic approach introduced by Bayer-Zubek and Dietterich (2005). In our work, we
assume that the time it takes to administer a test is incorporated into its cost. In the
future, we intend to extend our framework to support time-sensitive classification, both for
individual cases and for sequences.

Fan, Lee, Stolfo, and Miller (2000) studied the problem of cost-sensitive intrusion de-
tection systems (IDS). The goal is to maximize security while minimizing costs. Each
prediction (action) has a cost. Features are categorized into three cost levels according to
amount of information needed to compute their values. To reduce the cost of an IDS, high
cost rules are considered only when the predictions of low cost rules are not sufficiently
accurate.

Costs are also involved in the learning phase, during example acquisition and during
model learning. The problem of budgeted learning has been studied by Lizotte, Madani,
and Greiner (2003). There is a cost associated with obtaining each attribute value of a
training example, and the task is to determine what attributes to test given a budget.

A related problem is active feature-value acquisition. In this setup one tries to reduce
the cost of improving accuracy by identifying highly informative instances. Melville, Saar-
Tsechansky, Provost, and Mooney (2004) introduced an approach in which instances are
selected for acquisition based on the accuracy of the current model and its confidence in
the prediction.

Greiner, Grove, and Roth (2002) were pioneers in studying classifiers that actively decide
what tests to administer. They defined an active classifier as a classifier that given a
partially specified instance, returns either a class label or a strategy that specifies which
test should be performed next. Greiner et al. also analyzed the theoretical aspects of
learning optimal active classifiers using a variant of the probably-approximately-correct
(PAC) model. They showed that the task of learning optimal cost-sensitive active classifiers
is often intractable. However, this task is shown to be achievable when the active classifier
is allowed to perform only (at most) a constant number of tests, where the limit is provided
before learning. For this setup they proposed taking a dynamic programming approach to
build trees of at most depth d.

Our setup assumed that we are charged for acquiring each of the feature values of the test
cases. The term test strategy (Sheng, Ling, & Yang, 2005) describes the process of feature
values acquisition: which values to query for and in what order. Several test strategies have
been studied, including sequential, single batch and multiple batch (Sheng et al., 2006),
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each of which corresponds to a different diagnosis policy. These strategies are orthogonal
to our work because they assume a given decision tree.

Bilgic and Getoor (2007) tackled the problem of feature subset selection when costs are
involved. The objective is to minimize the sum of the information acquisition cost and the
misclassification cost. Unlike greedy approaches that compute the value of features one at
a time, they used a novel data structure called the value of information lattice (VOILA),
which exploits dependencies between missing features and makes it possible to share infor-
mation value computations between different feature subsets possible. VIOLA was shown
empirically to achieve dramatic cost improvements without the prohibitive computational
costs of comprehensive search.

6. Conclusions

Machine learning techniques are increasingly being used to produce a wide range of clas-
sifiers for complex real-world applications that involve nonuniform testing and misclassi-
fication costs. The increasing complexity of these applications poses a real challenge to
resource management during learning and classification. In this work we introduced a novel
framework for operating in such complex environments. Our framework has four major
advantages:

• It uses a non-greedy approach to build a decision tree and therefore is able to overcome
local minima problems.

• It evaluates entire trees during the search; thus, it can be adjusted to any cost scheme
that is defined over trees.

• It exhibits good anytime behavior and allows learning speed to be traded for clas-
sification costs. In many applications we are willing to allocate more time than we
would allocate to greedy methods. Our proposed framework can exploit such extra
resources.

• The sampling process can easily be parallelized and the method benefit from dis-
tributed computer power.

To evaluate ACT we have designed an extensive set of experiments with a wide range
of costs. Since there are only a few publicly available cost-oriented datasets, we designed a
parametric scheme that automatically assigns costs for existing datasets. The experimental
results show that ACT is superior to ICET and DTMC, existing cost-sensitive algorithms
that attempt to minimize test costs and misclassification costs simultaneously. Significance
tests found the differences to be statistically strong. ACT also exhibited good anytime
behavior: with the increase in time allocation, the cost of the learned models decreased.

ACT is a contract anytime algorithm that requires its sample size to be predetermined.
In the future we intend to convert ACT into an interruptible anytime algorithm by adopting
the IIDT general framework (Esmeir & Markovitch, 2007a). In addition, we plan to apply
monitoring techniques (Hansen & Zilberstein, 2001) for optimal scheduling of ACT and to
examine other strategies for evaluating subtrees.
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Table 5: Characteristics of the datasets used

Attributes Max attribute
Dataset Instances Nominal (binary) Numeric domain Classes

Breast Cancer 277 9 (3) 0 13 2
Bupa 345 0 (0) 5 - 2
Car 1728 6 (0) 0 4 4
Flare 323 10 (5) 0 7 4
Glass 214 0 (0) 9 - 7
Heart 296 8(4) 5 4 2
Hepatitis 154 13(13) 6 2 2
Iris 150 0 (0) 4 - 3
KRK 28056 6(0) 0 8 17
Monks-1 124+432 6 (2) 0 4 2
Monks-2 169+432 6 (2) 0 4 2
Monks-3 122+432 6 (2) 0 4 2
Multiplexer-20 615 20 (20) 0 2 2
Multi-XOR 200 11 (11) 0 2 2
Multi-AND-OR 200 11 (11) 0 2 2
Nursery 8703 8(8) 0 5 5
Pima 768 0(0) 8 - 2
TAE 151 4(1) 1 26 3
Tic-Tac-Toe 958 9 (0) 0 3 2
Titanic 2201 3(2) 0 4 2
Thyroid 3772 15(15) 5 2 3
Voting 232 16 (16) 0 2 2
Wine 178 0 (0) 13 - 3
XOR 3D 200 0 (0) 6 - 2
XOR-5 200 10 (10) 0 2 2
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Appendix A. Datasets

Table 5 lists the characteristics of the 25 datasets we used. Below we give a more detailed
description of the non-UCI datasets used in our experiments:

1. Multiplexer: The multiplexer task was used by several researchers for evaluating clas-
sifiers (e.g., Quinlan, 1993). An instance is a series of bits of length a + 2a, where a is
a positive integer. The first a bits represent an index into the remaining bits and the
label of the instance is the value of the indexed bit. In our experiments we considered
the 20-Multiplexer (a = 4). The dataset contains 500 randomly drawn instances.

2. Boolean XOR: Parity-like functions are known to be problematic for many learning
algorithms. However, they naturally arise in real-world data, such as the Drosophila
survival concept (Page & Ray, 2003). We considered XOR of five variables with five
additional irrelevant attributes.

27



Esmeir & Markovitch

3. Numeric XOR: A XOR based numeric dataset that has been used to evaluate learning
algorithms (e.g., Baram, El-Yaniv, & Luz, 2003). Each example consists of values for
x and y coordinates. The example is labeled 1 if the product of x and y is positive, and
−1 otherwise. We generalized this domain for three dimensions and added irrelevant
variables to make the concept harder.

4. Multi-XOR / Multi-AND-OR: These concepts are defined over 11 binary attributes.
In both cases the target concept is composed of several subconcepts, where the first
two attributes determines which of them is considered. The other 10 attributes are
used to form the subconcepts. In the Multi-XOR dataset, each subconcept is an XOR,
and in the Multi-AND-OR dataset, each subconcept is either AND or OR.
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